无人机路径规划:多差分进化策略阶段融合的双种群合作蜜獾算法。

IF 3.4 3区 医学 Q1 ENGINEERING, MULTIDISCIPLINARY
Xiaojie Tang, Chengfen Jia, Zhengyang He
{"title":"无人机路径规划:多差分进化策略阶段融合的双种群合作蜜獾算法。","authors":"Xiaojie Tang, Chengfen Jia, Zhengyang He","doi":"10.3390/biomimetics10030168","DOIUrl":null,"url":null,"abstract":"<p><p>To address the challenges of low optimization efficiency and premature convergence in existing algorithms for unmanned aerial vehicle (UAV) 3D path planning under complex operational constraints, this study proposes an enhanced honey badger algorithm (LRMHBA). First, a three-dimensional terrain model incorporating threat sources and UAV constraints is constructed to reflect the actual operational environment. Second, LRMHBA improves global search efficiency by optimizing the initial population distribution through the integration of Latin hypercube sampling and an elite population strategy. Subsequently, a stochastic perturbation mechanism is introduced to facilitate the escape from local optima. Furthermore, to adapt to the evolving exploration requirements during the optimization process, LRMHBA employs a differential mutation strategy tailored to populations with different fitness values, utilizing elite individuals from the initialization stage to guide the mutation process. This design forms a two-population cooperative mechanism that enhances the balance between exploration and exploitation, thereby improving convergence accuracy. Experimental evaluations on the CEC2017 benchmark suite demonstrate the superiority of LRMHBA over 11 comparison algorithms. In the UAV 3D path planning task, LRMHBA consistently generated the shortest average path across three obstacle simulation scenarios of varying complexity, achieving the highest rank in the Friedman test.</p>","PeriodicalId":8907,"journal":{"name":"Biomimetics","volume":"10 3","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11940604/pdf/","citationCount":"0","resultStr":"{\"title\":\"UAV Path Planning: A Dual-Population Cooperative Honey Badger Algorithm for Staged Fusion of Multiple Differential Evolutionary Strategies.\",\"authors\":\"Xiaojie Tang, Chengfen Jia, Zhengyang He\",\"doi\":\"10.3390/biomimetics10030168\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>To address the challenges of low optimization efficiency and premature convergence in existing algorithms for unmanned aerial vehicle (UAV) 3D path planning under complex operational constraints, this study proposes an enhanced honey badger algorithm (LRMHBA). First, a three-dimensional terrain model incorporating threat sources and UAV constraints is constructed to reflect the actual operational environment. Second, LRMHBA improves global search efficiency by optimizing the initial population distribution through the integration of Latin hypercube sampling and an elite population strategy. Subsequently, a stochastic perturbation mechanism is introduced to facilitate the escape from local optima. Furthermore, to adapt to the evolving exploration requirements during the optimization process, LRMHBA employs a differential mutation strategy tailored to populations with different fitness values, utilizing elite individuals from the initialization stage to guide the mutation process. This design forms a two-population cooperative mechanism that enhances the balance between exploration and exploitation, thereby improving convergence accuracy. Experimental evaluations on the CEC2017 benchmark suite demonstrate the superiority of LRMHBA over 11 comparison algorithms. In the UAV 3D path planning task, LRMHBA consistently generated the shortest average path across three obstacle simulation scenarios of varying complexity, achieving the highest rank in the Friedman test.</p>\",\"PeriodicalId\":8907,\"journal\":{\"name\":\"Biomimetics\",\"volume\":\"10 3\",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-03-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11940604/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomimetics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/biomimetics10030168\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomimetics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/biomimetics10030168","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

针对现有算法在复杂操作约束下优化效率低、过早收敛的问题,提出了一种增强型蜜獾算法(LRMHBA)。首先,建立了包含威胁源和无人机约束的三维地形模型,以反映无人机的实际作战环境;其次,LRMHBA通过整合拉丁超立方体采样和精英种群策略,优化初始种群分布,提高全局搜索效率。在此基础上,引入了随机扰动机制,促进了局部最优解的逃逸。此外,为了适应优化过程中不断变化的探索需求,LRMHBA采用了针对不同适应度群体的差异突变策略,利用初始阶段的精英个体来指导突变过程。该设计形成了一种双种群合作机制,增强了勘探与开采的平衡性,从而提高了收敛精度。在CEC2017基准测试套件上的实验评估表明,LRMHBA优于11种比较算法。在无人机3D路径规划任务中,LRMHBA在不同复杂程度的三个障碍物模拟场景中始终生成最短平均路径,在Friedman测试中获得最高排名。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
UAV Path Planning: A Dual-Population Cooperative Honey Badger Algorithm for Staged Fusion of Multiple Differential Evolutionary Strategies.

To address the challenges of low optimization efficiency and premature convergence in existing algorithms for unmanned aerial vehicle (UAV) 3D path planning under complex operational constraints, this study proposes an enhanced honey badger algorithm (LRMHBA). First, a three-dimensional terrain model incorporating threat sources and UAV constraints is constructed to reflect the actual operational environment. Second, LRMHBA improves global search efficiency by optimizing the initial population distribution through the integration of Latin hypercube sampling and an elite population strategy. Subsequently, a stochastic perturbation mechanism is introduced to facilitate the escape from local optima. Furthermore, to adapt to the evolving exploration requirements during the optimization process, LRMHBA employs a differential mutation strategy tailored to populations with different fitness values, utilizing elite individuals from the initialization stage to guide the mutation process. This design forms a two-population cooperative mechanism that enhances the balance between exploration and exploitation, thereby improving convergence accuracy. Experimental evaluations on the CEC2017 benchmark suite demonstrate the superiority of LRMHBA over 11 comparison algorithms. In the UAV 3D path planning task, LRMHBA consistently generated the shortest average path across three obstacle simulation scenarios of varying complexity, achieving the highest rank in the Friedman test.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biomimetics
Biomimetics Biochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
3.50
自引率
11.10%
发文量
189
审稿时长
11 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信