气动人工肌肉扭转响应分析。

IF 3.4 3区 医学 Q1 ENGINEERING, MULTIDISCIPLINARY
Frank C Cianciarulo, Eric Y Kim, Norman M Wereley
{"title":"气动人工肌肉扭转响应分析。","authors":"Frank C Cianciarulo, Eric Y Kim, Norman M Wereley","doi":"10.3390/biomimetics10030139","DOIUrl":null,"url":null,"abstract":"<p><p>Pneumatic artificial muscles (PAMs) consist of an elastomeric bladder wrapped in a helical braid. When inflated, PAMs expand radially and contract axially, producing large axial forces. PAMs are advantageous because of their high specific work and specific power, as well as their ability to produce large axial displacements. The axial and radial behavior of PAMs have been well studied. The torsional response of PAMs have not been explored before. Accurate prediction of the torsional force was desired for use in a bio-inspired worm-like robot capable of using an auger mounted to a PAM to bore out tunnels. Thus, an understanding of torsional response was a key objective. Modeling of the torsional response was performed using a force balance approach, and multiple model variations were considered, such as St. Venant's torsion, bladder buckling, and asymmetrical braid loading. Torsional testing was performed to validate the model using a custom torsional testing system. Data from the tests was compared to the predicted torsional response.</p>","PeriodicalId":8907,"journal":{"name":"Biomimetics","volume":"10 3","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11940222/pdf/","citationCount":"0","resultStr":"{\"title\":\"Analysis of Torsional Response in Pneumatic Artificial Muscles.\",\"authors\":\"Frank C Cianciarulo, Eric Y Kim, Norman M Wereley\",\"doi\":\"10.3390/biomimetics10030139\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Pneumatic artificial muscles (PAMs) consist of an elastomeric bladder wrapped in a helical braid. When inflated, PAMs expand radially and contract axially, producing large axial forces. PAMs are advantageous because of their high specific work and specific power, as well as their ability to produce large axial displacements. The axial and radial behavior of PAMs have been well studied. The torsional response of PAMs have not been explored before. Accurate prediction of the torsional force was desired for use in a bio-inspired worm-like robot capable of using an auger mounted to a PAM to bore out tunnels. Thus, an understanding of torsional response was a key objective. Modeling of the torsional response was performed using a force balance approach, and multiple model variations were considered, such as St. Venant's torsion, bladder buckling, and asymmetrical braid loading. Torsional testing was performed to validate the model using a custom torsional testing system. Data from the tests was compared to the predicted torsional response.</p>\",\"PeriodicalId\":8907,\"journal\":{\"name\":\"Biomimetics\",\"volume\":\"10 3\",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-02-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11940222/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomimetics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/biomimetics10030139\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomimetics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/biomimetics10030139","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

气动人造肌肉(PAMs)由一个包裹在螺旋辫中的弹性膀胱组成。充气时,pam径向膨胀,轴向收缩,产生较大的轴向力。pam的优势在于其高比功和比功率,以及产生大轴向位移的能力。pam的轴向和径向行为已经得到了很好的研究。在此之前,对pam的扭转响应尚未进行研究。在仿生蠕虫机器人中,需要准确预测扭转力,这种机器人能够使用安装在PAM上的螺旋钻钻隧道。因此,扭转响应的理解是一个关键的目标。采用力平衡方法进行扭转响应建模,并考虑了多种模型变化,如St. Venant扭转、膀胱屈曲和不对称编织载荷。使用自定义扭转测试系统进行扭转测试以验证模型。将试验数据与预测扭转响应进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analysis of Torsional Response in Pneumatic Artificial Muscles.

Pneumatic artificial muscles (PAMs) consist of an elastomeric bladder wrapped in a helical braid. When inflated, PAMs expand radially and contract axially, producing large axial forces. PAMs are advantageous because of their high specific work and specific power, as well as their ability to produce large axial displacements. The axial and radial behavior of PAMs have been well studied. The torsional response of PAMs have not been explored before. Accurate prediction of the torsional force was desired for use in a bio-inspired worm-like robot capable of using an auger mounted to a PAM to bore out tunnels. Thus, an understanding of torsional response was a key objective. Modeling of the torsional response was performed using a force balance approach, and multiple model variations were considered, such as St. Venant's torsion, bladder buckling, and asymmetrical braid loading. Torsional testing was performed to validate the model using a custom torsional testing system. Data from the tests was compared to the predicted torsional response.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biomimetics
Biomimetics Biochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
3.50
自引率
11.10%
发文量
189
审稿时长
11 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信