苯胺交联可回收纤维素网络。

IF 4.2 3区 化学 Q2 POLYMER SCIENCE
Meiling Zhang, Sathiyaraj Subramaniyan, Minna Hakkarainen
{"title":"苯胺交联可回收纤维素网络。","authors":"Meiling Zhang, Sathiyaraj Subramaniyan, Minna Hakkarainen","doi":"10.1002/marc.202401094","DOIUrl":null,"url":null,"abstract":"<p><p>A series of cellulose networks are designed by reversibly crosslinking amino-functionalized 2-hydroxyethyl cellulose (HEC-NH<sub>2</sub>) with different amounts of vanillin dimer (VA-CHO). The Schiff base reaction between amino-and aldehyde groups creates networks (SBHEC) bridged with crosslinks containing dynamic imine groups. These SBHEC networks can be hot pressed to flexible films with good thermal stability and solvent resistance, including notable stability in water, opposite to water-soluble HEC and HEC-NH<sub>2</sub>. Compared to HEC-NH<sub>2</sub>, the cross-linked SBHEC networks exhibit higher glass transition temperatures, elastic modulus, and tensile stress at break, and slightly reduced tensile strain at break. Reprocessing of the SBHEC networks is achieved through hot pressing under facile conditions, leading to good recovery of mechanical properties. Furthermore, the materials can be chemically recycled in a closed-loop by imine-hydrolysis under acidic conditions at room temperature. This releases the original building blocks HEC-NH<sub>2</sub> and VA-CHO, which can be recured to produce new SBHEC. This work highlights the potential of dynamic covalent cellulose networks as mechanically and chemically recyclable materials, contributing to the development of closed-loop recycling systems.</p>","PeriodicalId":205,"journal":{"name":"Macromolecular Rapid Communications","volume":" ","pages":"e2401094"},"PeriodicalIF":4.2000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Divanillin Cross-Linked Recyclable Cellulose Networks.\",\"authors\":\"Meiling Zhang, Sathiyaraj Subramaniyan, Minna Hakkarainen\",\"doi\":\"10.1002/marc.202401094\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A series of cellulose networks are designed by reversibly crosslinking amino-functionalized 2-hydroxyethyl cellulose (HEC-NH<sub>2</sub>) with different amounts of vanillin dimer (VA-CHO). The Schiff base reaction between amino-and aldehyde groups creates networks (SBHEC) bridged with crosslinks containing dynamic imine groups. These SBHEC networks can be hot pressed to flexible films with good thermal stability and solvent resistance, including notable stability in water, opposite to water-soluble HEC and HEC-NH<sub>2</sub>. Compared to HEC-NH<sub>2</sub>, the cross-linked SBHEC networks exhibit higher glass transition temperatures, elastic modulus, and tensile stress at break, and slightly reduced tensile strain at break. Reprocessing of the SBHEC networks is achieved through hot pressing under facile conditions, leading to good recovery of mechanical properties. Furthermore, the materials can be chemically recycled in a closed-loop by imine-hydrolysis under acidic conditions at room temperature. This releases the original building blocks HEC-NH<sub>2</sub> and VA-CHO, which can be recured to produce new SBHEC. This work highlights the potential of dynamic covalent cellulose networks as mechanically and chemically recyclable materials, contributing to the development of closed-loop recycling systems.</p>\",\"PeriodicalId\":205,\"journal\":{\"name\":\"Macromolecular Rapid Communications\",\"volume\":\" \",\"pages\":\"e2401094\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2025-03-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Macromolecular Rapid Communications\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/marc.202401094\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecular Rapid Communications","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/marc.202401094","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

通过氨基功能化2-羟乙基纤维素(HEC-NH2)与不同量的香兰素二聚体(VA-CHO)可逆交联,设计了一系列纤维素网络。氨基和醛基团之间的希夫碱反应产生了由含有动态亚胺基团的交联桥接的网络(SBHEC)。与水溶性HEC和HEC- nh2相反,这些SBHEC网络可以热压成具有良好热稳定性和耐溶剂性的柔性薄膜,包括在水中的显著稳定性。与HEC-NH2相比,交联的SBHEC网络具有更高的玻璃化转变温度、弹性模量和断裂时的拉伸应力,并且断裂时的拉伸应变略有降低。在简单的条件下,通过热压实现了shec网络的再加工,使其力学性能得到了很好的恢复。此外,材料可以在室温酸性条件下通过亚胺水解在闭环中进行化学循环。这释放了原始的构建块HEC-NH2和VA-CHO,它们可以被回收以产生新的SBHEC。这项工作强调了动态共价纤维素网络作为机械和化学可回收材料的潜力,有助于闭环回收系统的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Divanillin Cross-Linked Recyclable Cellulose Networks.

A series of cellulose networks are designed by reversibly crosslinking amino-functionalized 2-hydroxyethyl cellulose (HEC-NH2) with different amounts of vanillin dimer (VA-CHO). The Schiff base reaction between amino-and aldehyde groups creates networks (SBHEC) bridged with crosslinks containing dynamic imine groups. These SBHEC networks can be hot pressed to flexible films with good thermal stability and solvent resistance, including notable stability in water, opposite to water-soluble HEC and HEC-NH2. Compared to HEC-NH2, the cross-linked SBHEC networks exhibit higher glass transition temperatures, elastic modulus, and tensile stress at break, and slightly reduced tensile strain at break. Reprocessing of the SBHEC networks is achieved through hot pressing under facile conditions, leading to good recovery of mechanical properties. Furthermore, the materials can be chemically recycled in a closed-loop by imine-hydrolysis under acidic conditions at room temperature. This releases the original building blocks HEC-NH2 and VA-CHO, which can be recured to produce new SBHEC. This work highlights the potential of dynamic covalent cellulose networks as mechanically and chemically recyclable materials, contributing to the development of closed-loop recycling systems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Macromolecular Rapid Communications
Macromolecular Rapid Communications 工程技术-高分子科学
CiteScore
7.70
自引率
6.50%
发文量
477
审稿时长
1.4 months
期刊介绍: Macromolecular Rapid Communications publishes original research in polymer science, ranging from chemistry and physics of polymers to polymers in materials science and life sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信