Matteo Lucchini, Manuel Cardosa-Gutierrez, Mario Murari, Fabio Frassetto, Luca Poletto, Mauro Nisoli, Francoise Remacle
{"title":"乙烯阳离子少飞秒弛豫动力学的同位素效应。","authors":"Matteo Lucchini, Manuel Cardosa-Gutierrez, Mario Murari, Fabio Frassetto, Luca Poletto, Mauro Nisoli, Francoise Remacle","doi":"10.1021/acs.jpca.5c01020","DOIUrl":null,"url":null,"abstract":"<p><p>Few-femtosecond extreme-ultraviolet (EUV) pulses with tunable energy are employed to initiate the Jahn-Teller structural rearrangement in the ethylene cation. We report on a combined experimental and theoretical investigation of an unusual isotope effect on the low-energy competing H/D-loss and H<sub>2</sub>/D<sub>2</sub>-loss channels observed in the ultrafast dynamics induced by an EUV-pump pulse and probed by an infrared (IR) pulse. The relative production yields of C<sub>2</sub>D<sub>4</sub><sup>+</sup>, C<sub>2</sub>D<sub>3</sub><sup>+</sup>, and C<sub>2</sub>D<sub>2</sub><sup>+</sup> exhibit pronounced oscillations with a period of ∼50 fs as a function of the pump-probe delay, while the oscillatory patterns are less pronounced for C<sub>2</sub>H<sub>4</sub><sup>+</sup>. By using surface hopping to model the nonadiabatic dynamics in the four lowest electronic states of the cation, we show that the enhanced oscillations in deuterated fragment yields arise from a synergy between the isotope effects on the wave packet relaxation through the network of conical intersections and on the vibrational frequencies of the cation.</p>","PeriodicalId":59,"journal":{"name":"The Journal of Physical Chemistry A","volume":" ","pages":"3063-3070"},"PeriodicalIF":2.7000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Isotope Effect on the Few-Femtosecond Relaxation Dynamics of the Ethylene Cation.\",\"authors\":\"Matteo Lucchini, Manuel Cardosa-Gutierrez, Mario Murari, Fabio Frassetto, Luca Poletto, Mauro Nisoli, Francoise Remacle\",\"doi\":\"10.1021/acs.jpca.5c01020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Few-femtosecond extreme-ultraviolet (EUV) pulses with tunable energy are employed to initiate the Jahn-Teller structural rearrangement in the ethylene cation. We report on a combined experimental and theoretical investigation of an unusual isotope effect on the low-energy competing H/D-loss and H<sub>2</sub>/D<sub>2</sub>-loss channels observed in the ultrafast dynamics induced by an EUV-pump pulse and probed by an infrared (IR) pulse. The relative production yields of C<sub>2</sub>D<sub>4</sub><sup>+</sup>, C<sub>2</sub>D<sub>3</sub><sup>+</sup>, and C<sub>2</sub>D<sub>2</sub><sup>+</sup> exhibit pronounced oscillations with a period of ∼50 fs as a function of the pump-probe delay, while the oscillatory patterns are less pronounced for C<sub>2</sub>H<sub>4</sub><sup>+</sup>. By using surface hopping to model the nonadiabatic dynamics in the four lowest electronic states of the cation, we show that the enhanced oscillations in deuterated fragment yields arise from a synergy between the isotope effects on the wave packet relaxation through the network of conical intersections and on the vibrational frequencies of the cation.</p>\",\"PeriodicalId\":59,\"journal\":{\"name\":\"The Journal of Physical Chemistry A\",\"volume\":\" \",\"pages\":\"3063-3070\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Physical Chemistry A\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.jpca.5c01020\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/3/26 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry A","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpca.5c01020","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/26 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Isotope Effect on the Few-Femtosecond Relaxation Dynamics of the Ethylene Cation.
Few-femtosecond extreme-ultraviolet (EUV) pulses with tunable energy are employed to initiate the Jahn-Teller structural rearrangement in the ethylene cation. We report on a combined experimental and theoretical investigation of an unusual isotope effect on the low-energy competing H/D-loss and H2/D2-loss channels observed in the ultrafast dynamics induced by an EUV-pump pulse and probed by an infrared (IR) pulse. The relative production yields of C2D4+, C2D3+, and C2D2+ exhibit pronounced oscillations with a period of ∼50 fs as a function of the pump-probe delay, while the oscillatory patterns are less pronounced for C2H4+. By using surface hopping to model the nonadiabatic dynamics in the four lowest electronic states of the cation, we show that the enhanced oscillations in deuterated fragment yields arise from a synergy between the isotope effects on the wave packet relaxation through the network of conical intersections and on the vibrational frequencies of the cation.
期刊介绍:
The Journal of Physical Chemistry A is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, and chemical physicists.