Alem Oyarmoi, Stephen Birkinshaw, Caspar J. M. Hewett, Hayley J. Fowler
{"title":"纸莎草湿地的流动状况与生物相关水文属性的联系","authors":"Alem Oyarmoi, Stephen Birkinshaw, Caspar J. M. Hewett, Hayley J. Fowler","doi":"10.1002/eco.2744","DOIUrl":null,"url":null,"abstract":"<p>The dominant plant species in many African wetlands is <i>Cyperus papyrus</i>. Its adaptation to saturated and low-oxygen conditions and its dense structure and height provide breeding and feeding grounds for unique flora and fauna. As a keystone species adapted to local hydrology, the flooding regime of papyrus offers the full range of hydrologic conditions and events essential to ecosystem health. However, no study has attempted to link papyrus wetlands' flow regimes to their biologically relevant hydrologic attributes. This study assesses hydrologic alterations of a papyrus wetland's flow regime due to rice irrigation. We develop a conceptual ecological model linking papyrus to hydrologic attributes to determine the consequences of changed environmental flow components (EFCs) on papyrus as a habitat. We find that agricultural water management considerably alters the magnitude, duration, timing and rate of change of EFCs, which could affect productivity (seed dispersal, germination and establishment; rhizome spreading; papyrus distribution across transects; and dispersal of floating mats) in papyrus wetlands. However, the effect on the papyrus wetlands' natural pulsed regime is negligible when the ratio of irrigated area to catchment area is no greater than 1:150. Overall, a better understanding of the threats of water diversion for agriculture is made by linking papyrus' flow regimes to biologically relevant hydrologic attributes. Knowledge of the roles of the various EFCs could provide opportunities for conserving and protecting papyrus wetlands, especially for systems at risk of altered flows.</p>","PeriodicalId":55169,"journal":{"name":"Ecohydrology","volume":"18 2","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eco.2744","citationCount":"0","resultStr":"{\"title\":\"Linking the Flow Regime of Papyrus-Dominated Wetlands to Biologically Relevant Hydrologic Attributes\",\"authors\":\"Alem Oyarmoi, Stephen Birkinshaw, Caspar J. M. Hewett, Hayley J. Fowler\",\"doi\":\"10.1002/eco.2744\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The dominant plant species in many African wetlands is <i>Cyperus papyrus</i>. Its adaptation to saturated and low-oxygen conditions and its dense structure and height provide breeding and feeding grounds for unique flora and fauna. As a keystone species adapted to local hydrology, the flooding regime of papyrus offers the full range of hydrologic conditions and events essential to ecosystem health. However, no study has attempted to link papyrus wetlands' flow regimes to their biologically relevant hydrologic attributes. This study assesses hydrologic alterations of a papyrus wetland's flow regime due to rice irrigation. We develop a conceptual ecological model linking papyrus to hydrologic attributes to determine the consequences of changed environmental flow components (EFCs) on papyrus as a habitat. We find that agricultural water management considerably alters the magnitude, duration, timing and rate of change of EFCs, which could affect productivity (seed dispersal, germination and establishment; rhizome spreading; papyrus distribution across transects; and dispersal of floating mats) in papyrus wetlands. However, the effect on the papyrus wetlands' natural pulsed regime is negligible when the ratio of irrigated area to catchment area is no greater than 1:150. Overall, a better understanding of the threats of water diversion for agriculture is made by linking papyrus' flow regimes to biologically relevant hydrologic attributes. Knowledge of the roles of the various EFCs could provide opportunities for conserving and protecting papyrus wetlands, especially for systems at risk of altered flows.</p>\",\"PeriodicalId\":55169,\"journal\":{\"name\":\"Ecohydrology\",\"volume\":\"18 2\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eco.2744\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ecohydrology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/eco.2744\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecohydrology","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/eco.2744","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
Linking the Flow Regime of Papyrus-Dominated Wetlands to Biologically Relevant Hydrologic Attributes
The dominant plant species in many African wetlands is Cyperus papyrus. Its adaptation to saturated and low-oxygen conditions and its dense structure and height provide breeding and feeding grounds for unique flora and fauna. As a keystone species adapted to local hydrology, the flooding regime of papyrus offers the full range of hydrologic conditions and events essential to ecosystem health. However, no study has attempted to link papyrus wetlands' flow regimes to their biologically relevant hydrologic attributes. This study assesses hydrologic alterations of a papyrus wetland's flow regime due to rice irrigation. We develop a conceptual ecological model linking papyrus to hydrologic attributes to determine the consequences of changed environmental flow components (EFCs) on papyrus as a habitat. We find that agricultural water management considerably alters the magnitude, duration, timing and rate of change of EFCs, which could affect productivity (seed dispersal, germination and establishment; rhizome spreading; papyrus distribution across transects; and dispersal of floating mats) in papyrus wetlands. However, the effect on the papyrus wetlands' natural pulsed regime is negligible when the ratio of irrigated area to catchment area is no greater than 1:150. Overall, a better understanding of the threats of water diversion for agriculture is made by linking papyrus' flow regimes to biologically relevant hydrologic attributes. Knowledge of the roles of the various EFCs could provide opportunities for conserving and protecting papyrus wetlands, especially for systems at risk of altered flows.
期刊介绍:
Ecohydrology is an international journal publishing original scientific and review papers that aim to improve understanding of processes at the interface between ecology and hydrology and associated applications related to environmental management.
Ecohydrology seeks to increase interdisciplinary insights by placing particular emphasis on interactions and associated feedbacks in both space and time between ecological systems and the hydrological cycle. Research contributions are solicited from disciplines focusing on the physical, ecological, biological, biogeochemical, geomorphological, drainage basin, mathematical and methodological aspects of ecohydrology. Research in both terrestrial and aquatic systems is of interest provided it explicitly links ecological systems and the hydrologic cycle; research such as aquatic ecological, channel engineering, or ecological or hydrological modelling is less appropriate for the journal unless it specifically addresses the criteria above. Manuscripts describing individual case studies are of interest in cases where broader insights are discussed beyond site- and species-specific results.