{"title":"一种可拉伸、可附着、透明的多离子生态皮肤,用于鲁棒自供电交互传感","authors":"Zhiqing Bai, Yunlong Xu, Yuan Fan, Qichong Zhang","doi":"10.1002/idm2.12229","DOIUrl":null,"url":null,"abstract":"<p>Bioinspired energy-autonomous interactive electronics are prevalent. However, self-powered artificial skins are often challenging to be combined with excellent mechanical properties, optical transparency, autonomous attachability, and biocompatibility. Herein, a robust ecological polyionic skin (polyionic eco-skin) based on triboelectric mechanism consisting of ethyl cellulose/waterborne polyurethane/Cu nanoparticles (EWC) green electroactive sensitive material and polyethylene oxide/waterborne polyurethane/phytic acid (PWP) polyionic current collector is proposed. The polyionic eco-skin features sufficient stretchability (90%) and low Young's modulus (0.8 MPa) close to that of human soft tissue, high transparency (> 84% of transmission) in the visible light range, and broad static/dynamic adhesiveness, which endows it with strong adaptive implementation capacity in flexible curved electronics. More importantly, the self-powered polyionic eco-skin exhibits enhanced force-electric conversion performance by coordinating the effect of nanoparticle-polymer interfacial polarization and porous structure of sensitive material. Integrating multiple characteristics enables the polyionic eco-skin to effectively convert biomechanical energy into electrical energy, supporting self-powered functionality for itself and related circuits. Moreover, the eco-skin can be utilized to construct an interactive system and realize the remote noncontact manipulation of targets. The polyionic eco-skin holds tremendous application potential in self-powered security systems, human–machine interaction interfaces, and bionic robots, which is expected to inject new vitality into a human–cyber–physical intelligence integration.</p>","PeriodicalId":100685,"journal":{"name":"Interdisciplinary Materials","volume":"4 2","pages":"321-332"},"PeriodicalIF":24.5000,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/idm2.12229","citationCount":"0","resultStr":"{\"title\":\"A Stretchable, Attachable, and Transparent Polyionic Ecological Skin for Robust Self-Powered Interactive Sensing\",\"authors\":\"Zhiqing Bai, Yunlong Xu, Yuan Fan, Qichong Zhang\",\"doi\":\"10.1002/idm2.12229\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Bioinspired energy-autonomous interactive electronics are prevalent. However, self-powered artificial skins are often challenging to be combined with excellent mechanical properties, optical transparency, autonomous attachability, and biocompatibility. Herein, a robust ecological polyionic skin (polyionic eco-skin) based on triboelectric mechanism consisting of ethyl cellulose/waterborne polyurethane/Cu nanoparticles (EWC) green electroactive sensitive material and polyethylene oxide/waterborne polyurethane/phytic acid (PWP) polyionic current collector is proposed. The polyionic eco-skin features sufficient stretchability (90%) and low Young's modulus (0.8 MPa) close to that of human soft tissue, high transparency (> 84% of transmission) in the visible light range, and broad static/dynamic adhesiveness, which endows it with strong adaptive implementation capacity in flexible curved electronics. More importantly, the self-powered polyionic eco-skin exhibits enhanced force-electric conversion performance by coordinating the effect of nanoparticle-polymer interfacial polarization and porous structure of sensitive material. Integrating multiple characteristics enables the polyionic eco-skin to effectively convert biomechanical energy into electrical energy, supporting self-powered functionality for itself and related circuits. Moreover, the eco-skin can be utilized to construct an interactive system and realize the remote noncontact manipulation of targets. The polyionic eco-skin holds tremendous application potential in self-powered security systems, human–machine interaction interfaces, and bionic robots, which is expected to inject new vitality into a human–cyber–physical intelligence integration.</p>\",\"PeriodicalId\":100685,\"journal\":{\"name\":\"Interdisciplinary Materials\",\"volume\":\"4 2\",\"pages\":\"321-332\"},\"PeriodicalIF\":24.5000,\"publicationDate\":\"2024-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/idm2.12229\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Interdisciplinary Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/idm2.12229\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Interdisciplinary Materials","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/idm2.12229","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
A Stretchable, Attachable, and Transparent Polyionic Ecological Skin for Robust Self-Powered Interactive Sensing
Bioinspired energy-autonomous interactive electronics are prevalent. However, self-powered artificial skins are often challenging to be combined with excellent mechanical properties, optical transparency, autonomous attachability, and biocompatibility. Herein, a robust ecological polyionic skin (polyionic eco-skin) based on triboelectric mechanism consisting of ethyl cellulose/waterborne polyurethane/Cu nanoparticles (EWC) green electroactive sensitive material and polyethylene oxide/waterborne polyurethane/phytic acid (PWP) polyionic current collector is proposed. The polyionic eco-skin features sufficient stretchability (90%) and low Young's modulus (0.8 MPa) close to that of human soft tissue, high transparency (> 84% of transmission) in the visible light range, and broad static/dynamic adhesiveness, which endows it with strong adaptive implementation capacity in flexible curved electronics. More importantly, the self-powered polyionic eco-skin exhibits enhanced force-electric conversion performance by coordinating the effect of nanoparticle-polymer interfacial polarization and porous structure of sensitive material. Integrating multiple characteristics enables the polyionic eco-skin to effectively convert biomechanical energy into electrical energy, supporting self-powered functionality for itself and related circuits. Moreover, the eco-skin can be utilized to construct an interactive system and realize the remote noncontact manipulation of targets. The polyionic eco-skin holds tremendous application potential in self-powered security systems, human–machine interaction interfaces, and bionic robots, which is expected to inject new vitality into a human–cyber–physical intelligence integration.