量化北极海洋初级生产的潜在可预测性

IF 3.3 2区 地球科学 Q1 OCEANOGRAPHY
Courtney M. Payne, Nicole S. Lovenduski, Marika M. Holland, Kristen M. Krumhardt, Alice K. DuVivier
{"title":"量化北极海洋初级生产的潜在可预测性","authors":"Courtney M. Payne,&nbsp;Nicole S. Lovenduski,&nbsp;Marika M. Holland,&nbsp;Kristen M. Krumhardt,&nbsp;Alice K. DuVivier","doi":"10.1029/2024JC021668","DOIUrl":null,"url":null,"abstract":"<p>Phytoplankton in the Arctic Ocean and sub-Arctic seas support a rich marine food web that sustains Indigenous communities as well as some of the world's largest fisheries. As sea ice retreat leads to further expansion of these fisheries, there is growing need for predictions of phytoplankton net primary production (NPP), which will likely allow better management of food resources in the region. Here, we use perfect model simulations of the Community Earth System Model version 2 (CESM2) to quantify short-term (month to 2 years) predictability of Arctic Ocean NPP. Our results indicate that NPP is potentially predictable during the most productive summer months for at least 2 years, largely due to the highly predictable Arctic shelves where fisheries in the Arctic are projected to expand. Sea surface temperatures, which are an important limitation on phytoplankton growth and also are predictable for multiple years, are the most important physical driver of this predictability. Finally, we find that the predictability of NPP in the 2030s is enhanced relative to the 2010s, indicating that the utility of these predictions may increase in the near future. This work indicates that operational forecasts using Earth system models may provide moderately skillful predictions of NPP in the Arctic, possibly aiding in the management of Arctic marine resources.</p>","PeriodicalId":54340,"journal":{"name":"Journal of Geophysical Research-Oceans","volume":"130 4","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantifying the Potential Predictability of Arctic Marine Primary Production\",\"authors\":\"Courtney M. Payne,&nbsp;Nicole S. Lovenduski,&nbsp;Marika M. Holland,&nbsp;Kristen M. Krumhardt,&nbsp;Alice K. DuVivier\",\"doi\":\"10.1029/2024JC021668\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Phytoplankton in the Arctic Ocean and sub-Arctic seas support a rich marine food web that sustains Indigenous communities as well as some of the world's largest fisheries. As sea ice retreat leads to further expansion of these fisheries, there is growing need for predictions of phytoplankton net primary production (NPP), which will likely allow better management of food resources in the region. Here, we use perfect model simulations of the Community Earth System Model version 2 (CESM2) to quantify short-term (month to 2 years) predictability of Arctic Ocean NPP. Our results indicate that NPP is potentially predictable during the most productive summer months for at least 2 years, largely due to the highly predictable Arctic shelves where fisheries in the Arctic are projected to expand. Sea surface temperatures, which are an important limitation on phytoplankton growth and also are predictable for multiple years, are the most important physical driver of this predictability. Finally, we find that the predictability of NPP in the 2030s is enhanced relative to the 2010s, indicating that the utility of these predictions may increase in the near future. This work indicates that operational forecasts using Earth system models may provide moderately skillful predictions of NPP in the Arctic, possibly aiding in the management of Arctic marine resources.</p>\",\"PeriodicalId\":54340,\"journal\":{\"name\":\"Journal of Geophysical Research-Oceans\",\"volume\":\"130 4\",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Geophysical Research-Oceans\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2024JC021668\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OCEANOGRAPHY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research-Oceans","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JC021668","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OCEANOGRAPHY","Score":null,"Total":0}
引用次数: 0

摘要

北冰洋和亚北极海域的浮游植物支持着丰富的海洋食物网,维持着土著社区以及世界上一些最大的渔业。随着海冰的消退导致这些渔业的进一步扩大,越来越需要预测浮游植物净初级产量(NPP),这可能有助于更好地管理该地区的食物资源。本文利用社区地球系统模式第2版(CESM2)的完美模式模拟,量化了北冰洋NPP的短期(一个月到2年)可预测性。我们的研究结果表明,NPP在至少2年的最多产的夏季是可以预测的,这主要是由于高度可预测的北极大陆架,北极的渔业预计将扩大。海洋表面温度是浮游植物生长的重要限制因素,也是多年可预测的,是这种可预测性最重要的物理驱动因素。最后,我们发现2030年代NPP的可预测性相对于2010年代有所增强,表明这些预测的效用在不久的将来可能会增加。这项工作表明,使用地球系统模型的业务预报可以提供北极NPP的中等熟练预测,可能有助于北极海洋资源的管理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quantifying the Potential Predictability of Arctic Marine Primary Production

Phytoplankton in the Arctic Ocean and sub-Arctic seas support a rich marine food web that sustains Indigenous communities as well as some of the world's largest fisheries. As sea ice retreat leads to further expansion of these fisheries, there is growing need for predictions of phytoplankton net primary production (NPP), which will likely allow better management of food resources in the region. Here, we use perfect model simulations of the Community Earth System Model version 2 (CESM2) to quantify short-term (month to 2 years) predictability of Arctic Ocean NPP. Our results indicate that NPP is potentially predictable during the most productive summer months for at least 2 years, largely due to the highly predictable Arctic shelves where fisheries in the Arctic are projected to expand. Sea surface temperatures, which are an important limitation on phytoplankton growth and also are predictable for multiple years, are the most important physical driver of this predictability. Finally, we find that the predictability of NPP in the 2030s is enhanced relative to the 2010s, indicating that the utility of these predictions may increase in the near future. This work indicates that operational forecasts using Earth system models may provide moderately skillful predictions of NPP in the Arctic, possibly aiding in the management of Arctic marine resources.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Geophysical Research-Oceans
Journal of Geophysical Research-Oceans Earth and Planetary Sciences-Oceanography
CiteScore
7.00
自引率
13.90%
发文量
429
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信