{"title":"在对数正则曲面和三折的Iitaka体积上","authors":"Guodu Chen, Jingjun Han, Wenfei Liu","doi":"10.1112/jlms.70132","DOIUrl":null,"url":null,"abstract":"<p>Given positive integers <span></span><math>\n <semantics>\n <mrow>\n <mi>d</mi>\n <mo>⩾</mo>\n <mi>κ</mi>\n </mrow>\n <annotation>$d\\geqslant \\kappa$</annotation>\n </semantics></math> and a subset <span></span><math>\n <semantics>\n <mrow>\n <mi>Γ</mi>\n <mo>⊂</mo>\n <mo>[</mo>\n <mn>0</mn>\n <mo>,</mo>\n <mn>1</mn>\n <mo>]</mo>\n </mrow>\n <annotation>$\\Gamma \\subset [0,1]$</annotation>\n </semantics></math>, let <span></span><math>\n <semantics>\n <mrow>\n <msubsup>\n <mo>Ivol</mo>\n <mi>lc</mi>\n <mi>Γ</mi>\n </msubsup>\n <mrow>\n <mo>(</mo>\n <mi>d</mi>\n <mo>,</mo>\n <mi>κ</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\operatorname{Ivol}_\\mathrm{lc}^\\Gamma (d,\\kappa)$</annotation>\n </semantics></math> denote the set of Iitaka volumes of <span></span><math>\n <semantics>\n <mi>d</mi>\n <annotation>$d$</annotation>\n </semantics></math>-dimensional projective log canonical pairs <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mi>X</mi>\n <mo>,</mo>\n <mi>B</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$(X, B)$</annotation>\n </semantics></math> such that the Iitaka–Kodaira dimension <span></span><math>\n <semantics>\n <mrow>\n <mi>κ</mi>\n <mo>(</mo>\n <msub>\n <mi>K</mi>\n <mi>X</mi>\n </msub>\n <mo>+</mo>\n <mi>B</mi>\n <mo>)</mo>\n <mo>=</mo>\n <mi>κ</mi>\n </mrow>\n <annotation>$\\kappa (K_X+B)=\\kappa$</annotation>\n </semantics></math> and the coefficients of <span></span><math>\n <semantics>\n <mi>B</mi>\n <annotation>$B$</annotation>\n </semantics></math> come from <span></span><math>\n <semantics>\n <mi>Γ</mi>\n <annotation>$\\Gamma$</annotation>\n </semantics></math>. In this paper, we show that, if <span></span><math>\n <semantics>\n <mi>Γ</mi>\n <annotation>$\\Gamma$</annotation>\n </semantics></math> satisfies the descending chain condition, then so does <span></span><math>\n <semantics>\n <mrow>\n <msubsup>\n <mo>Ivol</mo>\n <mi>lc</mi>\n <mi>Γ</mi>\n </msubsup>\n <mrow>\n <mo>(</mo>\n <mi>d</mi>\n <mo>,</mo>\n <mi>κ</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\operatorname{Ivol}_\\mathrm{lc}^\\Gamma (d,\\kappa)$</annotation>\n </semantics></math> for <span></span><math>\n <semantics>\n <mrow>\n <mi>d</mi>\n <mo>⩽</mo>\n <mn>3</mn>\n </mrow>\n <annotation>$d\\leqslant 3$</annotation>\n </semantics></math>. In case <span></span><math>\n <semantics>\n <mrow>\n <mi>d</mi>\n <mo>⩽</mo>\n <mn>3</mn>\n </mrow>\n <annotation>$d\\leqslant 3$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <mi>κ</mi>\n <mo>=</mo>\n <mn>1</mn>\n </mrow>\n <annotation>$\\kappa =1$</annotation>\n </semantics></math>, <span></span><math>\n <semantics>\n <mi>Γ</mi>\n <annotation>$\\Gamma$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <msubsup>\n <mo>Ivol</mo>\n <mi>lc</mi>\n <mi>Γ</mi>\n </msubsup>\n <mrow>\n <mo>(</mo>\n <mi>d</mi>\n <mo>,</mo>\n <mi>κ</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\operatorname{Ivol}_\\mathrm{lc}^\\Gamma (d,\\kappa)$</annotation>\n </semantics></math> are shown to share more topological properties, such as closedness in <span></span><math>\n <semantics>\n <mi>R</mi>\n <annotation>$\\mathbb {R}$</annotation>\n </semantics></math> and local finiteness of accumulation complexity. In higher dimensions, we show that the set of Iitaka volumes for <span></span><math>\n <semantics>\n <mi>d</mi>\n <annotation>$d$</annotation>\n </semantics></math>-dimensional klt pairs with Iitaka dimension <span></span><math>\n <semantics>\n <mrow>\n <mo>⩾</mo>\n <mi>d</mi>\n <mo>−</mo>\n <mn>2</mn>\n </mrow>\n <annotation>$\\geqslant d-2$</annotation>\n </semantics></math> satisfies the DCC, partially confirming a conjecture of Zhan Li. We give a more detailed description of the sets of Iitaka volumes for the following classes of projective log canonical surfaces: (1) smooth properly elliptic surfaces, (2) projective log canonical surfaces with coefficients from <span></span><math>\n <semantics>\n <mrow>\n <mo>{</mo>\n <mn>0</mn>\n <mo>}</mo>\n </mrow>\n <annotation>$\\lbrace 0\\rbrace$</annotation>\n </semantics></math> or <span></span><math>\n <semantics>\n <mrow>\n <mo>{</mo>\n <mn>0</mn>\n <mo>,</mo>\n <mn>1</mn>\n <mo>}</mo>\n </mrow>\n <annotation>$\\lbrace 0,1\\rbrace$</annotation>\n </semantics></math>. In particular, the minima as well as the minimal accumulation points are found in these cases.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"111 4","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Iitaka volumes of log canonical surfaces and threefolds\",\"authors\":\"Guodu Chen, Jingjun Han, Wenfei Liu\",\"doi\":\"10.1112/jlms.70132\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Given positive integers <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>d</mi>\\n <mo>⩾</mo>\\n <mi>κ</mi>\\n </mrow>\\n <annotation>$d\\\\geqslant \\\\kappa$</annotation>\\n </semantics></math> and a subset <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>Γ</mi>\\n <mo>⊂</mo>\\n <mo>[</mo>\\n <mn>0</mn>\\n <mo>,</mo>\\n <mn>1</mn>\\n <mo>]</mo>\\n </mrow>\\n <annotation>$\\\\Gamma \\\\subset [0,1]$</annotation>\\n </semantics></math>, let <span></span><math>\\n <semantics>\\n <mrow>\\n <msubsup>\\n <mo>Ivol</mo>\\n <mi>lc</mi>\\n <mi>Γ</mi>\\n </msubsup>\\n <mrow>\\n <mo>(</mo>\\n <mi>d</mi>\\n <mo>,</mo>\\n <mi>κ</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$\\\\operatorname{Ivol}_\\\\mathrm{lc}^\\\\Gamma (d,\\\\kappa)$</annotation>\\n </semantics></math> denote the set of Iitaka volumes of <span></span><math>\\n <semantics>\\n <mi>d</mi>\\n <annotation>$d$</annotation>\\n </semantics></math>-dimensional projective log canonical pairs <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>(</mo>\\n <mi>X</mi>\\n <mo>,</mo>\\n <mi>B</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$(X, B)$</annotation>\\n </semantics></math> such that the Iitaka–Kodaira dimension <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>κ</mi>\\n <mo>(</mo>\\n <msub>\\n <mi>K</mi>\\n <mi>X</mi>\\n </msub>\\n <mo>+</mo>\\n <mi>B</mi>\\n <mo>)</mo>\\n <mo>=</mo>\\n <mi>κ</mi>\\n </mrow>\\n <annotation>$\\\\kappa (K_X+B)=\\\\kappa$</annotation>\\n </semantics></math> and the coefficients of <span></span><math>\\n <semantics>\\n <mi>B</mi>\\n <annotation>$B$</annotation>\\n </semantics></math> come from <span></span><math>\\n <semantics>\\n <mi>Γ</mi>\\n <annotation>$\\\\Gamma$</annotation>\\n </semantics></math>. In this paper, we show that, if <span></span><math>\\n <semantics>\\n <mi>Γ</mi>\\n <annotation>$\\\\Gamma$</annotation>\\n </semantics></math> satisfies the descending chain condition, then so does <span></span><math>\\n <semantics>\\n <mrow>\\n <msubsup>\\n <mo>Ivol</mo>\\n <mi>lc</mi>\\n <mi>Γ</mi>\\n </msubsup>\\n <mrow>\\n <mo>(</mo>\\n <mi>d</mi>\\n <mo>,</mo>\\n <mi>κ</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$\\\\operatorname{Ivol}_\\\\mathrm{lc}^\\\\Gamma (d,\\\\kappa)$</annotation>\\n </semantics></math> for <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>d</mi>\\n <mo>⩽</mo>\\n <mn>3</mn>\\n </mrow>\\n <annotation>$d\\\\leqslant 3$</annotation>\\n </semantics></math>. In case <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>d</mi>\\n <mo>⩽</mo>\\n <mn>3</mn>\\n </mrow>\\n <annotation>$d\\\\leqslant 3$</annotation>\\n </semantics></math> and <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>κ</mi>\\n <mo>=</mo>\\n <mn>1</mn>\\n </mrow>\\n <annotation>$\\\\kappa =1$</annotation>\\n </semantics></math>, <span></span><math>\\n <semantics>\\n <mi>Γ</mi>\\n <annotation>$\\\\Gamma$</annotation>\\n </semantics></math> and <span></span><math>\\n <semantics>\\n <mrow>\\n <msubsup>\\n <mo>Ivol</mo>\\n <mi>lc</mi>\\n <mi>Γ</mi>\\n </msubsup>\\n <mrow>\\n <mo>(</mo>\\n <mi>d</mi>\\n <mo>,</mo>\\n <mi>κ</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$\\\\operatorname{Ivol}_\\\\mathrm{lc}^\\\\Gamma (d,\\\\kappa)$</annotation>\\n </semantics></math> are shown to share more topological properties, such as closedness in <span></span><math>\\n <semantics>\\n <mi>R</mi>\\n <annotation>$\\\\mathbb {R}$</annotation>\\n </semantics></math> and local finiteness of accumulation complexity. In higher dimensions, we show that the set of Iitaka volumes for <span></span><math>\\n <semantics>\\n <mi>d</mi>\\n <annotation>$d$</annotation>\\n </semantics></math>-dimensional klt pairs with Iitaka dimension <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>⩾</mo>\\n <mi>d</mi>\\n <mo>−</mo>\\n <mn>2</mn>\\n </mrow>\\n <annotation>$\\\\geqslant d-2$</annotation>\\n </semantics></math> satisfies the DCC, partially confirming a conjecture of Zhan Li. We give a more detailed description of the sets of Iitaka volumes for the following classes of projective log canonical surfaces: (1) smooth properly elliptic surfaces, (2) projective log canonical surfaces with coefficients from <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>{</mo>\\n <mn>0</mn>\\n <mo>}</mo>\\n </mrow>\\n <annotation>$\\\\lbrace 0\\\\rbrace$</annotation>\\n </semantics></math> or <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>{</mo>\\n <mn>0</mn>\\n <mo>,</mo>\\n <mn>1</mn>\\n <mo>}</mo>\\n </mrow>\\n <annotation>$\\\\lbrace 0,1\\\\rbrace$</annotation>\\n </semantics></math>. In particular, the minima as well as the minimal accumulation points are found in these cases.</p>\",\"PeriodicalId\":49989,\"journal\":{\"name\":\"Journal of the London Mathematical Society-Second Series\",\"volume\":\"111 4\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2025-03-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the London Mathematical Society-Second Series\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/jlms.70132\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the London Mathematical Society-Second Series","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/jlms.70132","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
On the Iitaka volumes of log canonical surfaces and threefolds
Given positive integers and a subset , let denote the set of Iitaka volumes of -dimensional projective log canonical pairs such that the Iitaka–Kodaira dimension and the coefficients of come from . In this paper, we show that, if satisfies the descending chain condition, then so does for . In case and , and are shown to share more topological properties, such as closedness in and local finiteness of accumulation complexity. In higher dimensions, we show that the set of Iitaka volumes for -dimensional klt pairs with Iitaka dimension satisfies the DCC, partially confirming a conjecture of Zhan Li. We give a more detailed description of the sets of Iitaka volumes for the following classes of projective log canonical surfaces: (1) smooth properly elliptic surfaces, (2) projective log canonical surfaces with coefficients from or . In particular, the minima as well as the minimal accumulation points are found in these cases.
期刊介绍:
The Journal of the London Mathematical Society has been publishing leading research in a broad range of mathematical subject areas since 1926. The Journal welcomes papers on subjects of general interest that represent a significant advance in mathematical knowledge, as well as submissions that are deemed to stimulate new interest and research activity.