Annesha Karmakar, G. Anil Kumar, Mohit Tyagi, Anikesh Pal
{"title":"热中子用GAGG:Ce闪烁探测器的厚度依赖灵敏度:GEANT4模拟和实验测量","authors":"Annesha Karmakar, G. Anil Kumar, Mohit Tyagi, Anikesh Pal","doi":"10.1007/s10967-024-09976-8","DOIUrl":null,"url":null,"abstract":"<div><p>In the present work, we report extensive GEANT4 simulations in order to study the dependence of sensitivity of Gd<sub>3</sub>Ga<sub>3</sub>Al<sub>2</sub>O<sub>12</sub>:Ce (GAGG:Ce) scintillation crystal based detector on thickness of the crystal. All the simulations are made considering a thermalised Am-Be neutron source. The simulations are validated, qualitatively and quantitatively, by comparing the simulated energy spectra and sensitivity values with those obtained from experimental measurements carried out using two different thicknesses of the crystal from our own experiment (0.5 mm and 3 mm) and validated with three other thicknesses (0.01 mm, 0.1 mm and 1 mm) from literature (Taggart et al. in IEEE Trans Nucl Sci 67:603–608, 2020). In this study, we define sensitivity of GAGG:Ce as the ratio of area under 77 keV sum peak to 45 keV peak. The present studies clearly confirm that, while it requires about 0.1 mm thickness for the GAGG:Ce crystal to fully absorb thermal neutrons, it requires about 3 mm to fully absorb the thermal neutron induced events. Further, we propose an equation, that can be used to estimate the thickness of the GAGG:Ce crystal directly from the observed sensitivity of the GAGG:Ce crystal. This equation could be very useful for the neutron imaging community for medical and space applications, as well as for manufactures of cameras meant for nuclear security purposes.</p></div>","PeriodicalId":661,"journal":{"name":"Journal of Radioanalytical and Nuclear Chemistry","volume":"334 3","pages":"2203 - 2210"},"PeriodicalIF":1.5000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10967-024-09976-8.pdf","citationCount":"0","resultStr":"{\"title\":\"Thickness dependent sensitivity of GAGG:Ce scintillation detectors for thermal neutrons: GEANT4 simulations and experimental measurements\",\"authors\":\"Annesha Karmakar, G. Anil Kumar, Mohit Tyagi, Anikesh Pal\",\"doi\":\"10.1007/s10967-024-09976-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In the present work, we report extensive GEANT4 simulations in order to study the dependence of sensitivity of Gd<sub>3</sub>Ga<sub>3</sub>Al<sub>2</sub>O<sub>12</sub>:Ce (GAGG:Ce) scintillation crystal based detector on thickness of the crystal. All the simulations are made considering a thermalised Am-Be neutron source. The simulations are validated, qualitatively and quantitatively, by comparing the simulated energy spectra and sensitivity values with those obtained from experimental measurements carried out using two different thicknesses of the crystal from our own experiment (0.5 mm and 3 mm) and validated with three other thicknesses (0.01 mm, 0.1 mm and 1 mm) from literature (Taggart et al. in IEEE Trans Nucl Sci 67:603–608, 2020). In this study, we define sensitivity of GAGG:Ce as the ratio of area under 77 keV sum peak to 45 keV peak. The present studies clearly confirm that, while it requires about 0.1 mm thickness for the GAGG:Ce crystal to fully absorb thermal neutrons, it requires about 3 mm to fully absorb the thermal neutron induced events. Further, we propose an equation, that can be used to estimate the thickness of the GAGG:Ce crystal directly from the observed sensitivity of the GAGG:Ce crystal. This equation could be very useful for the neutron imaging community for medical and space applications, as well as for manufactures of cameras meant for nuclear security purposes.</p></div>\",\"PeriodicalId\":661,\"journal\":{\"name\":\"Journal of Radioanalytical and Nuclear Chemistry\",\"volume\":\"334 3\",\"pages\":\"2203 - 2210\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2025-01-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10967-024-09976-8.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Radioanalytical and Nuclear Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10967-024-09976-8\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Radioanalytical and Nuclear Chemistry","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s10967-024-09976-8","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
摘要
在本工作中,我们报告了广泛的GEANT4模拟,以研究基于Gd3Ga3Al2O12:Ce (GAGG:Ce)闪烁晶体的探测器灵敏度与晶体厚度的依赖关系。所有的模拟都是考虑热化Am-Be中子源进行的。通过将模拟的能谱和灵敏度值与我们自己实验中使用两种不同厚度的晶体(0.5 mm和3 mm)进行的实验测量结果进行比较,并与文献中其他三种厚度(0.01 mm, 0.1 mm和1 mm)进行的实验测量结果进行了定性和定量验证(Taggart et al. in IEEE Trans nuclesci 67:603 - 608,2020)。在本研究中,我们将GAGG:Ce的灵敏度定义为77kev和峰下面积与45kev峰的比值。目前的研究清楚地证实,虽然要完全吸收热中子需要约0.1 mm的厚度,但要完全吸收热中子诱导事件则需要约3 mm的厚度。进一步,我们提出了一个方程,可以直接从观测到的GAGG:Ce晶体的灵敏度来估计GAGG:Ce晶体的厚度。这个方程对于中子成像社区的医疗和空间应用以及用于核安全目的的相机制造商来说非常有用。
Thickness dependent sensitivity of GAGG:Ce scintillation detectors for thermal neutrons: GEANT4 simulations and experimental measurements
In the present work, we report extensive GEANT4 simulations in order to study the dependence of sensitivity of Gd3Ga3Al2O12:Ce (GAGG:Ce) scintillation crystal based detector on thickness of the crystal. All the simulations are made considering a thermalised Am-Be neutron source. The simulations are validated, qualitatively and quantitatively, by comparing the simulated energy spectra and sensitivity values with those obtained from experimental measurements carried out using two different thicknesses of the crystal from our own experiment (0.5 mm and 3 mm) and validated with three other thicknesses (0.01 mm, 0.1 mm and 1 mm) from literature (Taggart et al. in IEEE Trans Nucl Sci 67:603–608, 2020). In this study, we define sensitivity of GAGG:Ce as the ratio of area under 77 keV sum peak to 45 keV peak. The present studies clearly confirm that, while it requires about 0.1 mm thickness for the GAGG:Ce crystal to fully absorb thermal neutrons, it requires about 3 mm to fully absorb the thermal neutron induced events. Further, we propose an equation, that can be used to estimate the thickness of the GAGG:Ce crystal directly from the observed sensitivity of the GAGG:Ce crystal. This equation could be very useful for the neutron imaging community for medical and space applications, as well as for manufactures of cameras meant for nuclear security purposes.
期刊介绍:
An international periodical publishing original papers, letters, review papers and short communications on nuclear chemistry. The subjects covered include: Nuclear chemistry, Radiochemistry, Radiation chemistry, Radiobiological chemistry, Environmental radiochemistry, Production and control of radioisotopes and labelled compounds, Nuclear power plant chemistry, Nuclear fuel chemistry, Radioanalytical chemistry, Radiation detection and measurement, Nuclear instrumentation and automation, etc.