可重构探针馈入磁电偶极子的定频二维广角扫描漏波阵列

IF 3.5 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Kai Qin;Bingjie Xiang;Kwai-Man Luk
{"title":"可重构探针馈入磁电偶极子的定频二维广角扫描漏波阵列","authors":"Kai Qin;Bingjie Xiang;Kwai-Man Luk","doi":"10.1109/OJAP.2025.3543251","DOIUrl":null,"url":null,"abstract":"A new 2-D scanning leaky-wave antenna (LWA) design is proposed, with a scanning range larger than competitors. It consists of a 1-bit reconfigurable magneto-electric (ME) dipole array and a pillbox beam-forming network (BFN). The probe-fed ME dipole is minimized to fit the holographic method and is introduced in LWA for the first time. A p-i-n diode is loaded in the L-shaped directly-fed probe to control whether it radiates. The dispersion characteristic of the linear LWA is examined to validate the effectiveness of the holographic method. A procedure is proposed to select the port and hologram for any-angle 2-D beam scanning. The prototype is fabricated and measured, and the results demonstrate the improved scanning range. The scanning range under the 3 dB gain decline condition covers ±54° across the broadside in the H-plane and ±37° in the E-plane in simulation. This design has the advantage of a wider scanning angle, 2-D scanning capability, and low cost. It may find applications in sensing, base stations, and vehicle communications.","PeriodicalId":34267,"journal":{"name":"IEEE Open Journal of Antennas and Propagation","volume":"6 2","pages":"613-620"},"PeriodicalIF":3.5000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10891697","citationCount":"0","resultStr":"{\"title\":\"Fixed-Frequency 2-D Wide-Angle Scanning Leaky-Wave Array With Reconfigurable Probe-Fed Magneto-Electric Dipole\",\"authors\":\"Kai Qin;Bingjie Xiang;Kwai-Man Luk\",\"doi\":\"10.1109/OJAP.2025.3543251\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A new 2-D scanning leaky-wave antenna (LWA) design is proposed, with a scanning range larger than competitors. It consists of a 1-bit reconfigurable magneto-electric (ME) dipole array and a pillbox beam-forming network (BFN). The probe-fed ME dipole is minimized to fit the holographic method and is introduced in LWA for the first time. A p-i-n diode is loaded in the L-shaped directly-fed probe to control whether it radiates. The dispersion characteristic of the linear LWA is examined to validate the effectiveness of the holographic method. A procedure is proposed to select the port and hologram for any-angle 2-D beam scanning. The prototype is fabricated and measured, and the results demonstrate the improved scanning range. The scanning range under the 3 dB gain decline condition covers ±54° across the broadside in the H-plane and ±37° in the E-plane in simulation. This design has the advantage of a wider scanning angle, 2-D scanning capability, and low cost. It may find applications in sensing, base stations, and vehicle communications.\",\"PeriodicalId\":34267,\"journal\":{\"name\":\"IEEE Open Journal of Antennas and Propagation\",\"volume\":\"6 2\",\"pages\":\"613-620\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-02-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10891697\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Open Journal of Antennas and Propagation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10891697/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of Antennas and Propagation","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10891697/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种新的二维扫描漏波天线(LWA)设计,其扫描范围比竞争对手大。它由一个1位可重构磁电偶极子阵列和一个药盒波束形成网络组成。为了适应全息方法,将探针馈入的ME偶极子最小化,并首次引入到LWA中。一个p-i-n二极管加载在l形直接馈电探头,以控制其是否辐射。研究了线性LWA的色散特性,验证了全息方法的有效性。提出了一种选择任意角度二维光束扫描端口和全息图的方法。制作了样机并进行了测量,结果表明扫描范围得到了改善。在3db增益下降条件下,模拟的扫描范围为h面±54°,e面±37°。该设计具有扫描角度更宽、二维扫描能力强、成本低等优点。它可以在传感、基站和车辆通信中找到应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fixed-Frequency 2-D Wide-Angle Scanning Leaky-Wave Array With Reconfigurable Probe-Fed Magneto-Electric Dipole
A new 2-D scanning leaky-wave antenna (LWA) design is proposed, with a scanning range larger than competitors. It consists of a 1-bit reconfigurable magneto-electric (ME) dipole array and a pillbox beam-forming network (BFN). The probe-fed ME dipole is minimized to fit the holographic method and is introduced in LWA for the first time. A p-i-n diode is loaded in the L-shaped directly-fed probe to control whether it radiates. The dispersion characteristic of the linear LWA is examined to validate the effectiveness of the holographic method. A procedure is proposed to select the port and hologram for any-angle 2-D beam scanning. The prototype is fabricated and measured, and the results demonstrate the improved scanning range. The scanning range under the 3 dB gain decline condition covers ±54° across the broadside in the H-plane and ±37° in the E-plane in simulation. This design has the advantage of a wider scanning angle, 2-D scanning capability, and low cost. It may find applications in sensing, base stations, and vehicle communications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.50
自引率
12.50%
发文量
90
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信