具有吸收边界条件和表面电流边界条件的Maxwell特征值问题的层次混合有限元法

IF 2.1 3区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Shi Jie Wang;Jie Liu
{"title":"具有吸收边界条件和表面电流边界条件的Maxwell特征值问题的层次混合有限元法","authors":"Shi Jie Wang;Jie Liu","doi":"10.1109/TMAG.2025.3540908","DOIUrl":null,"url":null,"abstract":"A mixed finite-element method (MFEM) is proposed to solve 3-D Maxwell’s eigenvalue problems with the absorbing boundary condition (ABC) and the surface current boundary condition (SCBC). In this MFEM, zero modes (including dc spurious modes and zero physical modes) can be removed using the constrained equations containing the matrices <inline-formula> <tex-math>$\\bar {\\bar {N}}$ </tex-math></inline-formula> and <inline-formula> <tex-math>$\\tilde {N}$ </tex-math></inline-formula>, where <inline-formula> <tex-math>$\\bar {\\bar {N}}$ </tex-math></inline-formula> denotes the nullspace matrix for complete and incomplete hierarchical vector basis functions (HVBFs); <inline-formula> <tex-math>$\\tilde {N}$ </tex-math></inline-formula> is the submatrix of <inline-formula> <tex-math>$\\bar {\\bar {N}}$ </tex-math></inline-formula>. It can be seen from numerical experiments that the MFEM is more efficient than the tree-cotree technique, the mixed mortar-element method based on a tetrahedral mesh, and the MFEMs based on Gauss’ law for the computational domain with multiple unconnected perfect electric conductor (PEC) boundaries.","PeriodicalId":13405,"journal":{"name":"IEEE Transactions on Magnetics","volume":"61 4","pages":"1-12"},"PeriodicalIF":2.1000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hierarchical Mixed Finite-Element Method for Maxwell’s Eigenvalue Problems With the Absorbing Boundary Condition and the Surface Current Boundary Condition\",\"authors\":\"Shi Jie Wang;Jie Liu\",\"doi\":\"10.1109/TMAG.2025.3540908\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A mixed finite-element method (MFEM) is proposed to solve 3-D Maxwell’s eigenvalue problems with the absorbing boundary condition (ABC) and the surface current boundary condition (SCBC). In this MFEM, zero modes (including dc spurious modes and zero physical modes) can be removed using the constrained equations containing the matrices <inline-formula> <tex-math>$\\\\bar {\\\\bar {N}}$ </tex-math></inline-formula> and <inline-formula> <tex-math>$\\\\tilde {N}$ </tex-math></inline-formula>, where <inline-formula> <tex-math>$\\\\bar {\\\\bar {N}}$ </tex-math></inline-formula> denotes the nullspace matrix for complete and incomplete hierarchical vector basis functions (HVBFs); <inline-formula> <tex-math>$\\\\tilde {N}$ </tex-math></inline-formula> is the submatrix of <inline-formula> <tex-math>$\\\\bar {\\\\bar {N}}$ </tex-math></inline-formula>. It can be seen from numerical experiments that the MFEM is more efficient than the tree-cotree technique, the mixed mortar-element method based on a tetrahedral mesh, and the MFEMs based on Gauss’ law for the computational domain with multiple unconnected perfect electric conductor (PEC) boundaries.\",\"PeriodicalId\":13405,\"journal\":{\"name\":\"IEEE Transactions on Magnetics\",\"volume\":\"61 4\",\"pages\":\"1-12\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-02-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Magnetics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10884614/\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Magnetics","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10884614/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种具有吸收边界条件(ABC)和表面电流边界条件(SCBC)的三维Maxwell特征值问题的混合有限元方法。在该MFEM中,可以使用包含矩阵$\bar {\bar {N}}$和$\tilde {N}$的约束方程去除零模态(包括直流杂散模态和零物理模态),其中$\bar {\bar {N}}$表示完全和不完全层次向量基函数(HVBFs)的零空间矩阵;$\tilde {N}$是$\bar {\bar {N}}$的子矩阵。数值实验结果表明,对于具有多个不连通完美电导体边界的计算域,MFEM比树-共树法、基于四面体网格的混合砂浆-单元法和基于高斯定律的MFEM效率更高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hierarchical Mixed Finite-Element Method for Maxwell’s Eigenvalue Problems With the Absorbing Boundary Condition and the Surface Current Boundary Condition
A mixed finite-element method (MFEM) is proposed to solve 3-D Maxwell’s eigenvalue problems with the absorbing boundary condition (ABC) and the surface current boundary condition (SCBC). In this MFEM, zero modes (including dc spurious modes and zero physical modes) can be removed using the constrained equations containing the matrices $\bar {\bar {N}}$ and $\tilde {N}$ , where $\bar {\bar {N}}$ denotes the nullspace matrix for complete and incomplete hierarchical vector basis functions (HVBFs); $\tilde {N}$ is the submatrix of $\bar {\bar {N}}$ . It can be seen from numerical experiments that the MFEM is more efficient than the tree-cotree technique, the mixed mortar-element method based on a tetrahedral mesh, and the MFEMs based on Gauss’ law for the computational domain with multiple unconnected perfect electric conductor (PEC) boundaries.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Magnetics
IEEE Transactions on Magnetics 工程技术-工程:电子与电气
CiteScore
4.00
自引率
14.30%
发文量
565
审稿时长
4.1 months
期刊介绍: Science and technology related to the basic physics and engineering of magnetism, magnetic materials, applied magnetics, magnetic devices, and magnetic data storage. The IEEE Transactions on Magnetics publishes scholarly articles of archival value as well as tutorial expositions and critical reviews of classical subjects and topics of current interest.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信