连通图中的最大和最大诱导匹配

IF 3.5 2区 数学 Q1 MATHEMATICS, APPLIED
Bo-Jun Yuan , Zhao-Yu Yang, Lu Zheng, Shi-Cai Gong
{"title":"连通图中的最大和最大诱导匹配","authors":"Bo-Jun Yuan ,&nbsp;Zhao-Yu Yang,&nbsp;Lu Zheng,&nbsp;Shi-Cai Gong","doi":"10.1016/j.amc.2025.129432","DOIUrl":null,"url":null,"abstract":"<div><div>An induced matching is defined as a set of edges whose end-vertices induce a subgraph that is 1-regular. Building upon the work of Gupta et al. (2012) <span><span>[11]</span></span> and Basavaraju et al. (2016) <span><span>[1]</span></span>, who determined the maximum number of maximal induced matchings in general and triangle-free graphs respectively, this paper extends their findings to connected graphs with <em>n</em> vertices. We establish a tight upper bound on the number of maximal and maximum induced matchings, as detailed below:<span><span><span><math><mrow><mo>{</mo><mtable><mtr><mtd><mrow><mo>(</mo><mtable><mtr><mtd><mi>n</mi></mtd></mtr><mtr><mtd><mn>2</mn></mtd></mtr></mtable><mo>)</mo></mrow></mtd><mtd><mspace></mspace><mrow><mi>if</mi></mrow><mspace></mspace><mn>1</mn><mo>≤</mo><mi>n</mi><mo>≤</mo><mn>8</mn><mo>;</mo></mtd></mtr><mtr><mtd><mrow><mo>(</mo><mtable><mtr><mtd><mrow><mo>⌊</mo><mfrac><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>⌋</mo></mrow></mtd></mtr><mtr><mtd><mn>2</mn></mtd></mtr></mtable><mo>)</mo></mrow><mo>⋅</mo><mrow><mo>(</mo><mtable><mtr><mtd><mrow><mo>⌈</mo><mfrac><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>⌉</mo></mrow></mtd></mtr><mtr><mtd><mn>2</mn></mtd></mtr></mtable><mo>)</mo></mrow><mo>−</mo><mo>(</mo><mo>⌊</mo><mfrac><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>⌋</mo><mo>−</mo><mn>1</mn><mo>)</mo><mo>⋅</mo><mo>(</mo><mo>⌈</mo><mfrac><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>⌉</mo><mo>−</mo><mn>1</mn><mo>)</mo><mo>+</mo><mn>1</mn></mtd><mtd><mspace></mspace><mrow><mi>if</mi></mrow><mspace></mspace><mn>9</mn><mo>≤</mo><mi>n</mi><mo>≤</mo><mn>13</mn><mo>;</mo></mtd></mtr><mtr><mtd><msup><mrow><mn>10</mn></mrow><mrow><mfrac><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow><mrow><mn>5</mn></mrow></mfrac></mrow></msup><mo>+</mo><mfrac><mrow><mi>n</mi><mo>+</mo><mn>144</mn></mrow><mrow><mn>30</mn></mrow></mfrac><mo>⋅</mo><msup><mrow><mn>6</mn></mrow><mrow><mfrac><mrow><mi>n</mi><mo>−</mo><mn>6</mn></mrow><mrow><mn>5</mn></mrow></mfrac></mrow></msup></mtd><mtd><mspace></mspace><mrow><mi>if</mi></mrow><mspace></mspace><mn>14</mn><mo>≤</mo><mi>n</mi><mo>≤</mo><mn>30</mn><mo>;</mo></mtd></mtr><mtr><mtd><msup><mrow><mn>10</mn></mrow><mrow><mfrac><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow><mrow><mn>5</mn></mrow></mfrac></mrow></msup><mo>+</mo><mfrac><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow><mrow><mn>5</mn></mrow></mfrac><mo>⋅</mo><msup><mrow><mn>6</mn></mrow><mrow><mfrac><mrow><mi>n</mi><mo>−</mo><mn>6</mn></mrow><mrow><mn>5</mn></mrow></mfrac></mrow></msup></mtd><mtd><mspace></mspace><mrow><mi>if</mi></mrow><mspace></mspace><mi>n</mi><mo>≥</mo><mn>31</mn><mo>.</mo></mtd></mtr></mtable></mrow></math></span></span></span> This result not only provides a theoretical upper bound but also implies a practical algorithmic application: enumerating all maximal induced matchings of an <em>n</em>-vertex connected graph in time <span><math><mi>O</mi><mo>(</mo><msup><mrow><mn>1.5849</mn></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo></math></span>. Additionally, our work offers an estimate for the number of maximal dissociation sets in connected graphs with <em>n</em> vertices.</div></div>","PeriodicalId":55496,"journal":{"name":"Applied Mathematics and Computation","volume":"500 ","pages":"Article 129432"},"PeriodicalIF":3.5000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Maximal and maximum induced matchings in connected graphs\",\"authors\":\"Bo-Jun Yuan ,&nbsp;Zhao-Yu Yang,&nbsp;Lu Zheng,&nbsp;Shi-Cai Gong\",\"doi\":\"10.1016/j.amc.2025.129432\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>An induced matching is defined as a set of edges whose end-vertices induce a subgraph that is 1-regular. Building upon the work of Gupta et al. (2012) <span><span>[11]</span></span> and Basavaraju et al. (2016) <span><span>[1]</span></span>, who determined the maximum number of maximal induced matchings in general and triangle-free graphs respectively, this paper extends their findings to connected graphs with <em>n</em> vertices. We establish a tight upper bound on the number of maximal and maximum induced matchings, as detailed below:<span><span><span><math><mrow><mo>{</mo><mtable><mtr><mtd><mrow><mo>(</mo><mtable><mtr><mtd><mi>n</mi></mtd></mtr><mtr><mtd><mn>2</mn></mtd></mtr></mtable><mo>)</mo></mrow></mtd><mtd><mspace></mspace><mrow><mi>if</mi></mrow><mspace></mspace><mn>1</mn><mo>≤</mo><mi>n</mi><mo>≤</mo><mn>8</mn><mo>;</mo></mtd></mtr><mtr><mtd><mrow><mo>(</mo><mtable><mtr><mtd><mrow><mo>⌊</mo><mfrac><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>⌋</mo></mrow></mtd></mtr><mtr><mtd><mn>2</mn></mtd></mtr></mtable><mo>)</mo></mrow><mo>⋅</mo><mrow><mo>(</mo><mtable><mtr><mtd><mrow><mo>⌈</mo><mfrac><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>⌉</mo></mrow></mtd></mtr><mtr><mtd><mn>2</mn></mtd></mtr></mtable><mo>)</mo></mrow><mo>−</mo><mo>(</mo><mo>⌊</mo><mfrac><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>⌋</mo><mo>−</mo><mn>1</mn><mo>)</mo><mo>⋅</mo><mo>(</mo><mo>⌈</mo><mfrac><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>⌉</mo><mo>−</mo><mn>1</mn><mo>)</mo><mo>+</mo><mn>1</mn></mtd><mtd><mspace></mspace><mrow><mi>if</mi></mrow><mspace></mspace><mn>9</mn><mo>≤</mo><mi>n</mi><mo>≤</mo><mn>13</mn><mo>;</mo></mtd></mtr><mtr><mtd><msup><mrow><mn>10</mn></mrow><mrow><mfrac><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow><mrow><mn>5</mn></mrow></mfrac></mrow></msup><mo>+</mo><mfrac><mrow><mi>n</mi><mo>+</mo><mn>144</mn></mrow><mrow><mn>30</mn></mrow></mfrac><mo>⋅</mo><msup><mrow><mn>6</mn></mrow><mrow><mfrac><mrow><mi>n</mi><mo>−</mo><mn>6</mn></mrow><mrow><mn>5</mn></mrow></mfrac></mrow></msup></mtd><mtd><mspace></mspace><mrow><mi>if</mi></mrow><mspace></mspace><mn>14</mn><mo>≤</mo><mi>n</mi><mo>≤</mo><mn>30</mn><mo>;</mo></mtd></mtr><mtr><mtd><msup><mrow><mn>10</mn></mrow><mrow><mfrac><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow><mrow><mn>5</mn></mrow></mfrac></mrow></msup><mo>+</mo><mfrac><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow><mrow><mn>5</mn></mrow></mfrac><mo>⋅</mo><msup><mrow><mn>6</mn></mrow><mrow><mfrac><mrow><mi>n</mi><mo>−</mo><mn>6</mn></mrow><mrow><mn>5</mn></mrow></mfrac></mrow></msup></mtd><mtd><mspace></mspace><mrow><mi>if</mi></mrow><mspace></mspace><mi>n</mi><mo>≥</mo><mn>31</mn><mo>.</mo></mtd></mtr></mtable></mrow></math></span></span></span> This result not only provides a theoretical upper bound but also implies a practical algorithmic application: enumerating all maximal induced matchings of an <em>n</em>-vertex connected graph in time <span><math><mi>O</mi><mo>(</mo><msup><mrow><mn>1.5849</mn></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo></math></span>. Additionally, our work offers an estimate for the number of maximal dissociation sets in connected graphs with <em>n</em> vertices.</div></div>\",\"PeriodicalId\":55496,\"journal\":{\"name\":\"Applied Mathematics and Computation\",\"volume\":\"500 \",\"pages\":\"Article 129432\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Mathematics and Computation\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0096300325001596\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics and Computation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0096300325001596","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

诱导匹配被定义为一组边,其端点诱导出一个1正则子图。Gupta et al.(2012)[11]和Basavaraju et al.(2016)[1]分别确定了一般图和无三角形图的最大诱导匹配的最大数量,在此基础上,本文将他们的发现扩展到具有n个顶点的连通图。我们建立了最大和最大诱导匹配个数的紧上界,具体如下:{(n2)if1≤n≤8;(⌊n2⌋2)⋅(作答作答作答作答作答作答作答作答作答作答作答作答作答作答作答作答作答作答作答作答作答作答作答作答作答作答作答作答作答作答作答作答作答作答作答作答作答作答作答作答作答作答作答作答作答作答作答作答作答作答作答作答作答作答作答作答。这个结果不仅提供了一个理论上的上界,而且还暗示了一个实际的算法应用:枚举时间为O(1.5849n)的n顶点连通图的所有极大诱导匹配。此外,我们的工作还提供了具有n个顶点的连接图中最大解离集数量的估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Maximal and maximum induced matchings in connected graphs
An induced matching is defined as a set of edges whose end-vertices induce a subgraph that is 1-regular. Building upon the work of Gupta et al. (2012) [11] and Basavaraju et al. (2016) [1], who determined the maximum number of maximal induced matchings in general and triangle-free graphs respectively, this paper extends their findings to connected graphs with n vertices. We establish a tight upper bound on the number of maximal and maximum induced matchings, as detailed below:{(n2)if1n8;(n22)(n22)(n21)(n21)+1if9n13;10n15+n+144306n65if14n30;10n15+n156n65ifn31. This result not only provides a theoretical upper bound but also implies a practical algorithmic application: enumerating all maximal induced matchings of an n-vertex connected graph in time O(1.5849n). Additionally, our work offers an estimate for the number of maximal dissociation sets in connected graphs with n vertices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.90
自引率
10.00%
发文量
755
审稿时长
36 days
期刊介绍: Applied Mathematics and Computation addresses work at the interface between applied mathematics, numerical computation, and applications of systems – oriented ideas to the physical, biological, social, and behavioral sciences, and emphasizes papers of a computational nature focusing on new algorithms, their analysis and numerical results. In addition to presenting research papers, Applied Mathematics and Computation publishes review articles and single–topics issues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信