具有一般测度的哈尔位移的换向子估计

IF 1.7 2区 数学 Q1 MATHEMATICS
Tainara Borges , José M. Conde Alonso , Jill Pipher , Nathan A. Wagner
{"title":"具有一般测度的哈尔位移的换向子估计","authors":"Tainara Borges ,&nbsp;José M. Conde Alonso ,&nbsp;Jill Pipher ,&nbsp;Nathan A. Wagner","doi":"10.1016/j.jfa.2025.110945","DOIUrl":null,"url":null,"abstract":"<div><div>We study <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup><mo>(</mo><mi>μ</mi><mo>)</mo></math></span> estimates for the commutator <span><math><mo>[</mo><mi>H</mi><mo>,</mo><mi>b</mi><mo>]</mo></math></span>, where the operator <span><math><mi>H</mi></math></span> is a dyadic model of the classical Hilbert transform introduced in <span><span>[9]</span></span>, <span><span>[10]</span></span> and is adapted to a non-doubling Borel measure <em>μ</em> satisfying a dyadic regularity condition which is necessary for <span><math><mi>H</mi></math></span> to be bounded on <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup><mo>(</mo><mi>μ</mi><mo>)</mo></math></span>. We show that <span><math><msub><mrow><mo>‖</mo><mo>[</mo><mi>H</mi><mo>,</mo><mi>b</mi><mo>]</mo><mo>‖</mo></mrow><mrow><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup><mo>(</mo><mi>μ</mi><mo>)</mo><mo>→</mo><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup><mo>(</mo><mi>μ</mi><mo>)</mo></mrow></msub><mo>≲</mo><msub><mrow><mo>‖</mo><mi>b</mi><mo>‖</mo></mrow><mrow><mrow><mi>BMO</mi></mrow><mo>(</mo><mi>μ</mi><mo>)</mo></mrow></msub></math></span>, but to <em>characterize</em> martingale BMO requires additional commutator information. We prove weighted inequalities for <span><math><mo>[</mo><mi>H</mi><mo>,</mo><mi>b</mi><mo>]</mo></math></span> together with a version of the John-Nirenberg inequality adapted to appropriate weight classes <span><math><msub><mrow><mover><mrow><mi>A</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></mrow><mrow><mi>p</mi></mrow></msub></math></span> that we define for our non-homogeneous setting. This requires establishing reverse Hölder inequalities for these new weight classes. Finally, we revisit the appropriate class of nonhomogeneous measures <em>μ</em> for the study of different types of Haar shift operators.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"289 5","pages":"Article 110945"},"PeriodicalIF":1.7000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Commutator estimates for Haar shifts with general measures\",\"authors\":\"Tainara Borges ,&nbsp;José M. Conde Alonso ,&nbsp;Jill Pipher ,&nbsp;Nathan A. Wagner\",\"doi\":\"10.1016/j.jfa.2025.110945\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We study <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup><mo>(</mo><mi>μ</mi><mo>)</mo></math></span> estimates for the commutator <span><math><mo>[</mo><mi>H</mi><mo>,</mo><mi>b</mi><mo>]</mo></math></span>, where the operator <span><math><mi>H</mi></math></span> is a dyadic model of the classical Hilbert transform introduced in <span><span>[9]</span></span>, <span><span>[10]</span></span> and is adapted to a non-doubling Borel measure <em>μ</em> satisfying a dyadic regularity condition which is necessary for <span><math><mi>H</mi></math></span> to be bounded on <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup><mo>(</mo><mi>μ</mi><mo>)</mo></math></span>. We show that <span><math><msub><mrow><mo>‖</mo><mo>[</mo><mi>H</mi><mo>,</mo><mi>b</mi><mo>]</mo><mo>‖</mo></mrow><mrow><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup><mo>(</mo><mi>μ</mi><mo>)</mo><mo>→</mo><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup><mo>(</mo><mi>μ</mi><mo>)</mo></mrow></msub><mo>≲</mo><msub><mrow><mo>‖</mo><mi>b</mi><mo>‖</mo></mrow><mrow><mrow><mi>BMO</mi></mrow><mo>(</mo><mi>μ</mi><mo>)</mo></mrow></msub></math></span>, but to <em>characterize</em> martingale BMO requires additional commutator information. We prove weighted inequalities for <span><math><mo>[</mo><mi>H</mi><mo>,</mo><mi>b</mi><mo>]</mo></math></span> together with a version of the John-Nirenberg inequality adapted to appropriate weight classes <span><math><msub><mrow><mover><mrow><mi>A</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></mrow><mrow><mi>p</mi></mrow></msub></math></span> that we define for our non-homogeneous setting. This requires establishing reverse Hölder inequalities for these new weight classes. Finally, we revisit the appropriate class of nonhomogeneous measures <em>μ</em> for the study of different types of Haar shift operators.</div></div>\",\"PeriodicalId\":15750,\"journal\":{\"name\":\"Journal of Functional Analysis\",\"volume\":\"289 5\",\"pages\":\"Article 110945\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2025-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Functional Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022123625001272\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022123625001272","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了对易子[H,b]的Lp(μ)估计,其中算子H是[9],[10]中引入的经典Hilbert变换的一个二进模型,并适应于一个非倍Borel测度μ,该测度满足对H在Lp(μ)上有界所必需的二进正则性条件。我们证明了‖[H,b]‖Lp(μ)→Lp(μ) >‖b‖BMO(μ),但要表征鞅BMO需要额外的换向子信息。我们证明了[H,b]的加权不等式以及我们为非齐次设置定义的适合于适当权重类ap的John-Nirenberg不等式的一个版本。这需要为这些新的体重级别建立反向Hölder不等式。最后,我们重新讨论了用于研究不同类型哈尔位移算子的非齐次测度μ的适当类别。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Commutator estimates for Haar shifts with general measures
We study Lp(μ) estimates for the commutator [H,b], where the operator H is a dyadic model of the classical Hilbert transform introduced in [9], [10] and is adapted to a non-doubling Borel measure μ satisfying a dyadic regularity condition which is necessary for H to be bounded on Lp(μ). We show that [H,b]Lp(μ)Lp(μ)bBMO(μ), but to characterize martingale BMO requires additional commutator information. We prove weighted inequalities for [H,b] together with a version of the John-Nirenberg inequality adapted to appropriate weight classes Aˆp that we define for our non-homogeneous setting. This requires establishing reverse Hölder inequalities for these new weight classes. Finally, we revisit the appropriate class of nonhomogeneous measures μ for the study of different types of Haar shift operators.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.20
自引率
5.90%
发文量
271
审稿时长
7.5 months
期刊介绍: The Journal of Functional Analysis presents original research papers in all scientific disciplines in which modern functional analysis plays a basic role. Articles by scientists in a variety of interdisciplinary areas are published. Research Areas Include: • Significant applications of functional analysis, including those to other areas of mathematics • New developments in functional analysis • Contributions to important problems in and challenges to functional analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信