Tainara Borges , José M. Conde Alonso , Jill Pipher , Nathan A. Wagner
{"title":"具有一般测度的哈尔位移的换向子估计","authors":"Tainara Borges , José M. Conde Alonso , Jill Pipher , Nathan A. Wagner","doi":"10.1016/j.jfa.2025.110945","DOIUrl":null,"url":null,"abstract":"<div><div>We study <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup><mo>(</mo><mi>μ</mi><mo>)</mo></math></span> estimates for the commutator <span><math><mo>[</mo><mi>H</mi><mo>,</mo><mi>b</mi><mo>]</mo></math></span>, where the operator <span><math><mi>H</mi></math></span> is a dyadic model of the classical Hilbert transform introduced in <span><span>[9]</span></span>, <span><span>[10]</span></span> and is adapted to a non-doubling Borel measure <em>μ</em> satisfying a dyadic regularity condition which is necessary for <span><math><mi>H</mi></math></span> to be bounded on <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup><mo>(</mo><mi>μ</mi><mo>)</mo></math></span>. We show that <span><math><msub><mrow><mo>‖</mo><mo>[</mo><mi>H</mi><mo>,</mo><mi>b</mi><mo>]</mo><mo>‖</mo></mrow><mrow><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup><mo>(</mo><mi>μ</mi><mo>)</mo><mo>→</mo><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup><mo>(</mo><mi>μ</mi><mo>)</mo></mrow></msub><mo>≲</mo><msub><mrow><mo>‖</mo><mi>b</mi><mo>‖</mo></mrow><mrow><mrow><mi>BMO</mi></mrow><mo>(</mo><mi>μ</mi><mo>)</mo></mrow></msub></math></span>, but to <em>characterize</em> martingale BMO requires additional commutator information. We prove weighted inequalities for <span><math><mo>[</mo><mi>H</mi><mo>,</mo><mi>b</mi><mo>]</mo></math></span> together with a version of the John-Nirenberg inequality adapted to appropriate weight classes <span><math><msub><mrow><mover><mrow><mi>A</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></mrow><mrow><mi>p</mi></mrow></msub></math></span> that we define for our non-homogeneous setting. This requires establishing reverse Hölder inequalities for these new weight classes. Finally, we revisit the appropriate class of nonhomogeneous measures <em>μ</em> for the study of different types of Haar shift operators.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"289 5","pages":"Article 110945"},"PeriodicalIF":1.7000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Commutator estimates for Haar shifts with general measures\",\"authors\":\"Tainara Borges , José M. Conde Alonso , Jill Pipher , Nathan A. Wagner\",\"doi\":\"10.1016/j.jfa.2025.110945\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We study <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup><mo>(</mo><mi>μ</mi><mo>)</mo></math></span> estimates for the commutator <span><math><mo>[</mo><mi>H</mi><mo>,</mo><mi>b</mi><mo>]</mo></math></span>, where the operator <span><math><mi>H</mi></math></span> is a dyadic model of the classical Hilbert transform introduced in <span><span>[9]</span></span>, <span><span>[10]</span></span> and is adapted to a non-doubling Borel measure <em>μ</em> satisfying a dyadic regularity condition which is necessary for <span><math><mi>H</mi></math></span> to be bounded on <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup><mo>(</mo><mi>μ</mi><mo>)</mo></math></span>. We show that <span><math><msub><mrow><mo>‖</mo><mo>[</mo><mi>H</mi><mo>,</mo><mi>b</mi><mo>]</mo><mo>‖</mo></mrow><mrow><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup><mo>(</mo><mi>μ</mi><mo>)</mo><mo>→</mo><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup><mo>(</mo><mi>μ</mi><mo>)</mo></mrow></msub><mo>≲</mo><msub><mrow><mo>‖</mo><mi>b</mi><mo>‖</mo></mrow><mrow><mrow><mi>BMO</mi></mrow><mo>(</mo><mi>μ</mi><mo>)</mo></mrow></msub></math></span>, but to <em>characterize</em> martingale BMO requires additional commutator information. We prove weighted inequalities for <span><math><mo>[</mo><mi>H</mi><mo>,</mo><mi>b</mi><mo>]</mo></math></span> together with a version of the John-Nirenberg inequality adapted to appropriate weight classes <span><math><msub><mrow><mover><mrow><mi>A</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></mrow><mrow><mi>p</mi></mrow></msub></math></span> that we define for our non-homogeneous setting. This requires establishing reverse Hölder inequalities for these new weight classes. Finally, we revisit the appropriate class of nonhomogeneous measures <em>μ</em> for the study of different types of Haar shift operators.</div></div>\",\"PeriodicalId\":15750,\"journal\":{\"name\":\"Journal of Functional Analysis\",\"volume\":\"289 5\",\"pages\":\"Article 110945\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2025-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Functional Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022123625001272\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022123625001272","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Commutator estimates for Haar shifts with general measures
We study estimates for the commutator , where the operator is a dyadic model of the classical Hilbert transform introduced in [9], [10] and is adapted to a non-doubling Borel measure μ satisfying a dyadic regularity condition which is necessary for to be bounded on . We show that , but to characterize martingale BMO requires additional commutator information. We prove weighted inequalities for together with a version of the John-Nirenberg inequality adapted to appropriate weight classes that we define for our non-homogeneous setting. This requires establishing reverse Hölder inequalities for these new weight classes. Finally, we revisit the appropriate class of nonhomogeneous measures μ for the study of different types of Haar shift operators.
期刊介绍:
The Journal of Functional Analysis presents original research papers in all scientific disciplines in which modern functional analysis plays a basic role. Articles by scientists in a variety of interdisciplinary areas are published.
Research Areas Include:
• Significant applications of functional analysis, including those to other areas of mathematics
• New developments in functional analysis
• Contributions to important problems in and challenges to functional analysis