n维球面上多项式向量场的动力学与可积性

IF 2.3 2区 数学 Q1 MATHEMATICS
Supriyo Jana, Soumen Sarkar
{"title":"n维球面上多项式向量场的动力学与可积性","authors":"Supriyo Jana,&nbsp;Soumen Sarkar","doi":"10.1016/j.jde.2025.113253","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we characterize arbitrary polynomial vector fields on <span><math><msup><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span>. We establish a necessary and sufficient condition for a degree one vector field on the odd-dimensional sphere <span><math><msup><mrow><mi>S</mi></mrow><mrow><mn>2</mn><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msup></math></span> to be Hamiltonian. Additionally, we classify polynomial vector fields on <span><math><msup><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> up to degree two that possess an invariant great <span><math><mo>(</mo><mi>n</mi><mo>−</mo><mn>1</mn><mo>)</mo></math></span>-sphere. We present a class of completely integrable vector fields on <span><math><msup><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span>. We found a sharp bound for the number of invariant meridian hyperplanes for a polynomial vector field on <span><math><msup><mrow><mi>S</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>. Furthermore, we compute the sharp bound for the number of invariant parallel hyperplanes for any polynomial vector field on <span><math><msup><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span>. Finally, we study homogeneous polynomial vector fields on <span><math><msup><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span>, providing a characterization of their invariant <span><math><mo>(</mo><mi>n</mi><mo>−</mo><mn>1</mn><mo>)</mo></math></span>-spheres.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"435 ","pages":"Article 113253"},"PeriodicalIF":2.3000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamics and integrability of polynomial vector fields on the n-dimensional sphere\",\"authors\":\"Supriyo Jana,&nbsp;Soumen Sarkar\",\"doi\":\"10.1016/j.jde.2025.113253\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, we characterize arbitrary polynomial vector fields on <span><math><msup><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span>. We establish a necessary and sufficient condition for a degree one vector field on the odd-dimensional sphere <span><math><msup><mrow><mi>S</mi></mrow><mrow><mn>2</mn><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msup></math></span> to be Hamiltonian. Additionally, we classify polynomial vector fields on <span><math><msup><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> up to degree two that possess an invariant great <span><math><mo>(</mo><mi>n</mi><mo>−</mo><mn>1</mn><mo>)</mo></math></span>-sphere. We present a class of completely integrable vector fields on <span><math><msup><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span>. We found a sharp bound for the number of invariant meridian hyperplanes for a polynomial vector field on <span><math><msup><mrow><mi>S</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>. Furthermore, we compute the sharp bound for the number of invariant parallel hyperplanes for any polynomial vector field on <span><math><msup><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span>. Finally, we study homogeneous polynomial vector fields on <span><math><msup><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span>, providing a characterization of their invariant <span><math><mo>(</mo><mi>n</mi><mo>−</mo><mn>1</mn><mo>)</mo></math></span>-spheres.</div></div>\",\"PeriodicalId\":15623,\"journal\":{\"name\":\"Journal of Differential Equations\",\"volume\":\"435 \",\"pages\":\"Article 113253\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-03-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022039625002748\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039625002748","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文对Sn上的任意多项式向量场进行了刻画。建立了奇维球S2n−1上的一次向量场是哈密顿的充要条件。此外,我们对Sn上二阶多项式向量场进行了分类,这些多项式向量场具有不变的大(n−1)球。给出了Sn上的一类完全可积向量场。我们找到了S2上多项式向量场的不变子午超平面数目的一个锐界。进一步,我们计算了Sn上任意多项式向量场的不变平行超平面数目的锐界。最后,我们研究了Sn上的齐次多项式向量场,给出了它们的不变(n−1)球的表征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dynamics and integrability of polynomial vector fields on the n-dimensional sphere
In this paper, we characterize arbitrary polynomial vector fields on Sn. We establish a necessary and sufficient condition for a degree one vector field on the odd-dimensional sphere S2n1 to be Hamiltonian. Additionally, we classify polynomial vector fields on Sn up to degree two that possess an invariant great (n1)-sphere. We present a class of completely integrable vector fields on Sn. We found a sharp bound for the number of invariant meridian hyperplanes for a polynomial vector field on S2. Furthermore, we compute the sharp bound for the number of invariant parallel hyperplanes for any polynomial vector field on Sn. Finally, we study homogeneous polynomial vector fields on Sn, providing a characterization of their invariant (n1)-spheres.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.40
自引率
8.30%
发文量
543
审稿时长
9 months
期刊介绍: The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools. Research Areas Include: • Mathematical control theory • Ordinary differential equations • Partial differential equations • Stochastic differential equations • Topological dynamics • Related topics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信