聚对苯二甲酸乙酯生物降解创新策略研究进展

IF 8 2区 工程技术 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Anamika Kushwaha, Lalit Goswami, Beom Soo Kim
{"title":"聚对苯二甲酸乙酯生物降解创新策略研究进展","authors":"Anamika Kushwaha,&nbsp;Lalit Goswami,&nbsp;Beom Soo Kim","doi":"10.1016/j.coche.2025.101121","DOIUrl":null,"url":null,"abstract":"<div><div>The present review thoroughly illustrates the recent advancements in the innovative strategies of poly (ethylene terephthalate) (PET) biodegradation. It encompasses the involvement of the optimization of pretreatment process, microbes-mining, mixed strain/multi-enzyme approach, supplementation of auxiliary agents, enzyme and molecular engineering, and so on, with further delving into the inclusion of smarter technologies such as computational modeling, molecular mechanics, docking simulation, and machine learning. Finally, the review anticipates rejuvenating the traditional PET biodegradation process, offering more advanced, sustainable, green, fast, economic, and efficient techniques for PET biodegradation.</div></div>","PeriodicalId":292,"journal":{"name":"Current Opinion in Chemical Engineering","volume":"48 ","pages":"Article 101121"},"PeriodicalIF":8.0000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Advancement in innovative strategies for poly (ethylene terephthalate) biodegradation\",\"authors\":\"Anamika Kushwaha,&nbsp;Lalit Goswami,&nbsp;Beom Soo Kim\",\"doi\":\"10.1016/j.coche.2025.101121\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The present review thoroughly illustrates the recent advancements in the innovative strategies of poly (ethylene terephthalate) (PET) biodegradation. It encompasses the involvement of the optimization of pretreatment process, microbes-mining, mixed strain/multi-enzyme approach, supplementation of auxiliary agents, enzyme and molecular engineering, and so on, with further delving into the inclusion of smarter technologies such as computational modeling, molecular mechanics, docking simulation, and machine learning. Finally, the review anticipates rejuvenating the traditional PET biodegradation process, offering more advanced, sustainable, green, fast, economic, and efficient techniques for PET biodegradation.</div></div>\",\"PeriodicalId\":292,\"journal\":{\"name\":\"Current Opinion in Chemical Engineering\",\"volume\":\"48 \",\"pages\":\"Article 101121\"},\"PeriodicalIF\":8.0000,\"publicationDate\":\"2025-03-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Opinion in Chemical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2211339825000322\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2211339825000322","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

本文综述了近年来聚对苯二甲酸乙酯(PET)生物降解创新策略的研究进展。它涉及预处理工艺优化、微生物挖掘、混合菌株/多酶方法、助剂补充、酶和分子工程等,并进一步深入到包括计算建模、分子力学、对接模拟和机器学习等智能技术。最后,展望了传统PET生物降解工艺的复兴,为PET生物降解提供更先进、可持续、绿色、快速、经济和高效的技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Advancement in innovative strategies for poly (ethylene terephthalate) biodegradation
The present review thoroughly illustrates the recent advancements in the innovative strategies of poly (ethylene terephthalate) (PET) biodegradation. It encompasses the involvement of the optimization of pretreatment process, microbes-mining, mixed strain/multi-enzyme approach, supplementation of auxiliary agents, enzyme and molecular engineering, and so on, with further delving into the inclusion of smarter technologies such as computational modeling, molecular mechanics, docking simulation, and machine learning. Finally, the review anticipates rejuvenating the traditional PET biodegradation process, offering more advanced, sustainable, green, fast, economic, and efficient techniques for PET biodegradation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Current Opinion in Chemical Engineering
Current Opinion in Chemical Engineering BIOTECHNOLOGY & APPLIED MICROBIOLOGYENGINE-ENGINEERING, CHEMICAL
CiteScore
12.80
自引率
3.00%
发文量
114
期刊介绍: Current Opinion in Chemical Engineering is devoted to bringing forth short and focused review articles written by experts on current advances in different areas of chemical engineering. Only invited review articles will be published. The goals of each review article in Current Opinion in Chemical Engineering are: 1. To acquaint the reader/researcher with the most important recent papers in the given topic. 2. To provide the reader with the views/opinions of the expert in each topic. The reviews are short (about 2500 words or 5-10 printed pages with figures) and serve as an invaluable source of information for researchers, teachers, professionals and students. The reviews also aim to stimulate exchange of ideas among experts. Themed sections: Each review will focus on particular aspects of one of the following themed sections of chemical engineering: 1. Nanotechnology 2. Energy and environmental engineering 3. Biotechnology and bioprocess engineering 4. Biological engineering (covering tissue engineering, regenerative medicine, drug delivery) 5. Separation engineering (covering membrane technologies, adsorbents, desalination, distillation etc.) 6. Materials engineering (covering biomaterials, inorganic especially ceramic materials, nanostructured materials). 7. Process systems engineering 8. Reaction engineering and catalysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信