乘性纯跳lsamvy噪声驱动的非均匀耗散随机微分方程的随机周期解

IF 1.2 3区 数学 Q1 MATHEMATICS
Shan Huang , Xiaoyue Li , Li Yang
{"title":"乘性纯跳lsamvy噪声驱动的非均匀耗散随机微分方程的随机周期解","authors":"Shan Huang ,&nbsp;Xiaoyue Li ,&nbsp;Li Yang","doi":"10.1016/j.jmaa.2025.129500","DOIUrl":null,"url":null,"abstract":"<div><div>This paper aims to investigate random periodic solutions in distribution of non-autonomous stochastic differential equations (SDEs) driven by multiplicative pure jump Lévy noises. Inspired by the refined basic coupling method for autonomous systems, we establish exponential contractivity of solutions of non-autonomous SDEs, where the coefficients are non-uniformly dissipative, and the requirements of Lévy measure corresponding to the Lévy process are not harsh (only with a truncated <em>α</em>-stable component). Based on this, we obtain the existence and uniqueness of the random periodic solutions in distribution by the criterion of the existence and uniqueness of the periodic Markov process. Meanwhile, two examples are provided to illustrate our results.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"550 1","pages":"Article 129500"},"PeriodicalIF":1.2000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Random periodic solutions of non-uniform dissipative stochastic differential equations driven by multiplicative pure jump Lévy noises\",\"authors\":\"Shan Huang ,&nbsp;Xiaoyue Li ,&nbsp;Li Yang\",\"doi\":\"10.1016/j.jmaa.2025.129500\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper aims to investigate random periodic solutions in distribution of non-autonomous stochastic differential equations (SDEs) driven by multiplicative pure jump Lévy noises. Inspired by the refined basic coupling method for autonomous systems, we establish exponential contractivity of solutions of non-autonomous SDEs, where the coefficients are non-uniformly dissipative, and the requirements of Lévy measure corresponding to the Lévy process are not harsh (only with a truncated <em>α</em>-stable component). Based on this, we obtain the existence and uniqueness of the random periodic solutions in distribution by the criterion of the existence and uniqueness of the periodic Markov process. Meanwhile, two examples are provided to illustrate our results.</div></div>\",\"PeriodicalId\":50147,\"journal\":{\"name\":\"Journal of Mathematical Analysis and Applications\",\"volume\":\"550 1\",\"pages\":\"Article 129500\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Analysis and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022247X25002811\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X25002811","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

研究乘性纯跳lsamvy噪声驱动的非自治随机微分方程(SDEs)分布的随机周期解。受自治系统的改进基本耦合方法的启发,我们建立了非自治SDEs解的指数收缩性,其中系数是非均匀耗散的,并且lsamvy过程对应的lsamvy测度的要求并不苛刻(只有截断的α-稳定分量)。在此基础上,利用周期马尔可夫过程的存在唯一性,得到了分布中随机周期解的存在唯一性。同时,给出了两个例子来说明我们的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Random periodic solutions of non-uniform dissipative stochastic differential equations driven by multiplicative pure jump Lévy noises
This paper aims to investigate random periodic solutions in distribution of non-autonomous stochastic differential equations (SDEs) driven by multiplicative pure jump Lévy noises. Inspired by the refined basic coupling method for autonomous systems, we establish exponential contractivity of solutions of non-autonomous SDEs, where the coefficients are non-uniformly dissipative, and the requirements of Lévy measure corresponding to the Lévy process are not harsh (only with a truncated α-stable component). Based on this, we obtain the existence and uniqueness of the random periodic solutions in distribution by the criterion of the existence and uniqueness of the periodic Markov process. Meanwhile, two examples are provided to illustrate our results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.50
自引率
7.70%
发文量
790
审稿时长
6 months
期刊介绍: The Journal of Mathematical Analysis and Applications presents papers that treat mathematical analysis and its numerous applications. The journal emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions. Papers are sought which employ one or more of the following areas of classical analysis: • Analytic number theory • Functional analysis and operator theory • Real and harmonic analysis • Complex analysis • Numerical analysis • Applied mathematics • Partial differential equations • Dynamical systems • Control and Optimization • Probability • Mathematical biology • Combinatorics • Mathematical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信