Shusheng Wei, Yuchen Shen, zhanpeng Zhang, Juan Wang
{"title":"创新Ag@Au纳米酶增强有机光电化学晶体管用于超灵敏赭曲霉毒素A检测","authors":"Shusheng Wei, Yuchen Shen, zhanpeng Zhang, Juan Wang","doi":"10.1016/j.biosx.2025.100612","DOIUrl":null,"url":null,"abstract":"<div><div>Organic bioelectronic devices are developing as adaptable platforms for advanced biosensing applications, such as wearable sensors, neural interfaces and tissue engineering, due to their remarkable flexibility, mobility, ease of manufacture, and biocompatibility. The article presents a unique organic photoelectrochemical transistor (OPECT) sensor, combined with an Ag@Au nanozyme-mediated catalytic precipitation mechanism, creating an ultrasensitive detection platform for Ochratoxin A (OTA). The ZnO/ZnFe<sub>2</sub>O<sub>4</sub> heterostructure is established as a novel gating module. The ZnFe<sub>2</sub>O<sub>4</sub> layer may boost electrolyte interaction and light accessibility to the ZnO nanoarray, thereby modulating the response of the polymeric poly (3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) channel, which can be monitored through the channel current. In conjunction with aptamer sensing, the Ag@Au nanozyme, exhibiting peroxidase-mimicking activity, catalyzes the oxidation of 4-chloro-1-naphthol (4-CN), leading to the formation of an insoluble precipitate on the gate electrode surface, which diminishes the photocurrent and modifies the transistor response. The OPECT sensor demonstrates outstanding analytical capabilities for OTA, featuring a wide dynamic range from 10<sup>−5</sup> ng/mL to 10 ng/mL and a detection limit of 0.0206 pg/mL. The advancement of this OPECT sensor offers potential for employing organic photoelectrochemical transistors as a high-performance platform for OTA detection.</div></div>","PeriodicalId":260,"journal":{"name":"Biosensors and Bioelectronics: X","volume":"24 ","pages":"Article 100612"},"PeriodicalIF":10.6100,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Innovative Ag@Au nanozyme-enhanced organic photoelectrochemical transistor for ultrasensitive ochratoxin A detection\",\"authors\":\"Shusheng Wei, Yuchen Shen, zhanpeng Zhang, Juan Wang\",\"doi\":\"10.1016/j.biosx.2025.100612\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Organic bioelectronic devices are developing as adaptable platforms for advanced biosensing applications, such as wearable sensors, neural interfaces and tissue engineering, due to their remarkable flexibility, mobility, ease of manufacture, and biocompatibility. The article presents a unique organic photoelectrochemical transistor (OPECT) sensor, combined with an Ag@Au nanozyme-mediated catalytic precipitation mechanism, creating an ultrasensitive detection platform for Ochratoxin A (OTA). The ZnO/ZnFe<sub>2</sub>O<sub>4</sub> heterostructure is established as a novel gating module. The ZnFe<sub>2</sub>O<sub>4</sub> layer may boost electrolyte interaction and light accessibility to the ZnO nanoarray, thereby modulating the response of the polymeric poly (3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) channel, which can be monitored through the channel current. In conjunction with aptamer sensing, the Ag@Au nanozyme, exhibiting peroxidase-mimicking activity, catalyzes the oxidation of 4-chloro-1-naphthol (4-CN), leading to the formation of an insoluble precipitate on the gate electrode surface, which diminishes the photocurrent and modifies the transistor response. The OPECT sensor demonstrates outstanding analytical capabilities for OTA, featuring a wide dynamic range from 10<sup>−5</sup> ng/mL to 10 ng/mL and a detection limit of 0.0206 pg/mL. The advancement of this OPECT sensor offers potential for employing organic photoelectrochemical transistors as a high-performance platform for OTA detection.</div></div>\",\"PeriodicalId\":260,\"journal\":{\"name\":\"Biosensors and Bioelectronics: X\",\"volume\":\"24 \",\"pages\":\"Article 100612\"},\"PeriodicalIF\":10.6100,\"publicationDate\":\"2025-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biosensors and Bioelectronics: X\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590137025000391\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosensors and Bioelectronics: X","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590137025000391","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
Innovative Ag@Au nanozyme-enhanced organic photoelectrochemical transistor for ultrasensitive ochratoxin A detection
Organic bioelectronic devices are developing as adaptable platforms for advanced biosensing applications, such as wearable sensors, neural interfaces and tissue engineering, due to their remarkable flexibility, mobility, ease of manufacture, and biocompatibility. The article presents a unique organic photoelectrochemical transistor (OPECT) sensor, combined with an Ag@Au nanozyme-mediated catalytic precipitation mechanism, creating an ultrasensitive detection platform for Ochratoxin A (OTA). The ZnO/ZnFe2O4 heterostructure is established as a novel gating module. The ZnFe2O4 layer may boost electrolyte interaction and light accessibility to the ZnO nanoarray, thereby modulating the response of the polymeric poly (3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) channel, which can be monitored through the channel current. In conjunction with aptamer sensing, the Ag@Au nanozyme, exhibiting peroxidase-mimicking activity, catalyzes the oxidation of 4-chloro-1-naphthol (4-CN), leading to the formation of an insoluble precipitate on the gate electrode surface, which diminishes the photocurrent and modifies the transistor response. The OPECT sensor demonstrates outstanding analytical capabilities for OTA, featuring a wide dynamic range from 10−5 ng/mL to 10 ng/mL and a detection limit of 0.0206 pg/mL. The advancement of this OPECT sensor offers potential for employing organic photoelectrochemical transistors as a high-performance platform for OTA detection.
期刊介绍:
Biosensors and Bioelectronics: X, an open-access companion journal of Biosensors and Bioelectronics, boasts a 2020 Impact Factor of 10.61 (Journal Citation Reports, Clarivate Analytics 2021). Offering authors the opportunity to share their innovative work freely and globally, Biosensors and Bioelectronics: X aims to be a timely and permanent source of information. The journal publishes original research papers, review articles, communications, editorial highlights, perspectives, opinions, and commentaries at the intersection of technological advancements and high-impact applications. Manuscripts submitted to Biosensors and Bioelectronics: X are assessed based on originality and innovation in technology development or applications, aligning with the journal's goal to cater to a broad audience interested in this dynamic field.