通过数值模拟了解可变形油滴附近空腔动力学

IF 8.7 1区 化学 Q1 ACOUSTICS
Deepak K. Pandey , Rupak Kumar , Vivek V. Ranade
{"title":"通过数值模拟了解可变形油滴附近空腔动力学","authors":"Deepak K. Pandey ,&nbsp;Rupak Kumar ,&nbsp;Vivek V. Ranade","doi":"10.1016/j.ultsonch.2025.107325","DOIUrl":null,"url":null,"abstract":"<div><div>Cavitation is increasingly being used for producing liquid–liquid emulsions. Cavity collapse generates microscale high-speed jets, which play a crucial role in cavitation-driven emulsification. It is thus essential to investigate the interaction of cavity and droplet to improve the understanding of the cavitation-driven emulsification process. In this study, we have numerically investigated the interaction of a single cavity-droplet pair dispersed in a water medium mimicking the scenario occurring inside a hydrodynamic cavitation-based fluidic device. A direct numerical simulation utilizing the multi-fluid, volume of fluid (VOF) method has been used for simulating different scenarios of cavity droplet interactions. The effect of the droplet-cavity size ratio (<span><math><mi>β</mi></math></span>) and the stand-off parameter (<span><math><mrow><mi>γ</mi><mo>)</mo></mrow></math></span> on cavity-droplet dynamics have been investigated. The influence of these parameters on cavity jet velocity <span><math><mfenced><mrow><msub><mi>U</mi><mrow><mi>max</mi></mrow></msub></mrow></mfenced></math></span> and energy dissipation rate <span><math><mrow><mo>(</mo><mi>ε</mi><mo>)</mo></mrow></math></span> was evaluated. Cavity jet velocity (<span><math><msub><mi>U</mi><mrow><mi>max</mi></mrow></msub></math></span>) increases at first, then decreases with the stand-off parameter whereas it increases and becomes almost constant for the size ratio. The maximum cavity jet velocity in the present work is obtained for the case <span><math><mrow><mi>β</mi><mo>=</mo><mn>2.5</mn><mo>(</mo><mi>γ</mi><mo>=</mo><mn>0.7</mn><mo>)</mo></mrow></math></span> and <span><math><mrow><mi>β</mi><mo>=</mo><mn>5</mn><mo>(</mo><mi>γ</mi><mo>=</mo><mn>1.2</mn><mo>)</mo></mrow></math></span>. The energy dissipation rate for cavity-oil droplet interaction is of the order <span><math><mrow><mspace></mspace><msup><mrow><mn>10</mn></mrow><mn>8</mn></msup></mrow></math></span> m<sup>2</sup>/s<sup>3</sup>, irrespective of the stand-off parameter and size ratio for a given driving force. The results presented in this work improve the current fundamental understanding of cavity–drop interactions and provide a useful basis for developing cavitation-induced droplet breakage models for predicting droplet size distributions, enabling enhanced applications of cavitation for emulsification in the chemical industries.</div></div>","PeriodicalId":442,"journal":{"name":"Ultrasonics Sonochemistry","volume":"116 ","pages":"Article 107325"},"PeriodicalIF":8.7000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Understanding cavity dynamics near deformable oil drop via numerical simulations\",\"authors\":\"Deepak K. Pandey ,&nbsp;Rupak Kumar ,&nbsp;Vivek V. Ranade\",\"doi\":\"10.1016/j.ultsonch.2025.107325\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Cavitation is increasingly being used for producing liquid–liquid emulsions. Cavity collapse generates microscale high-speed jets, which play a crucial role in cavitation-driven emulsification. It is thus essential to investigate the interaction of cavity and droplet to improve the understanding of the cavitation-driven emulsification process. In this study, we have numerically investigated the interaction of a single cavity-droplet pair dispersed in a water medium mimicking the scenario occurring inside a hydrodynamic cavitation-based fluidic device. A direct numerical simulation utilizing the multi-fluid, volume of fluid (VOF) method has been used for simulating different scenarios of cavity droplet interactions. The effect of the droplet-cavity size ratio (<span><math><mi>β</mi></math></span>) and the stand-off parameter (<span><math><mrow><mi>γ</mi><mo>)</mo></mrow></math></span> on cavity-droplet dynamics have been investigated. The influence of these parameters on cavity jet velocity <span><math><mfenced><mrow><msub><mi>U</mi><mrow><mi>max</mi></mrow></msub></mrow></mfenced></math></span> and energy dissipation rate <span><math><mrow><mo>(</mo><mi>ε</mi><mo>)</mo></mrow></math></span> was evaluated. Cavity jet velocity (<span><math><msub><mi>U</mi><mrow><mi>max</mi></mrow></msub></math></span>) increases at first, then decreases with the stand-off parameter whereas it increases and becomes almost constant for the size ratio. The maximum cavity jet velocity in the present work is obtained for the case <span><math><mrow><mi>β</mi><mo>=</mo><mn>2.5</mn><mo>(</mo><mi>γ</mi><mo>=</mo><mn>0.7</mn><mo>)</mo></mrow></math></span> and <span><math><mrow><mi>β</mi><mo>=</mo><mn>5</mn><mo>(</mo><mi>γ</mi><mo>=</mo><mn>1.2</mn><mo>)</mo></mrow></math></span>. The energy dissipation rate for cavity-oil droplet interaction is of the order <span><math><mrow><mspace></mspace><msup><mrow><mn>10</mn></mrow><mn>8</mn></msup></mrow></math></span> m<sup>2</sup>/s<sup>3</sup>, irrespective of the stand-off parameter and size ratio for a given driving force. The results presented in this work improve the current fundamental understanding of cavity–drop interactions and provide a useful basis for developing cavitation-induced droplet breakage models for predicting droplet size distributions, enabling enhanced applications of cavitation for emulsification in the chemical industries.</div></div>\",\"PeriodicalId\":442,\"journal\":{\"name\":\"Ultrasonics Sonochemistry\",\"volume\":\"116 \",\"pages\":\"Article 107325\"},\"PeriodicalIF\":8.7000,\"publicationDate\":\"2025-03-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ultrasonics Sonochemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S135041772500104X\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ultrasonics Sonochemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S135041772500104X","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

摘要

空化越来越多地被用于生产液-液乳剂。空腔坍塌产生的微尺度高速射流在空化驱动乳化过程中起着至关重要的作用。因此,研究空腔与液滴的相互作用对提高对空腔驱动乳化过程的认识是必要的。在这项研究中,我们模拟了一个基于流体动力空化的流体装置内部发生的情况,数值研究了分散在水介质中的单个空腔-液滴对的相互作用。利用多流体、流体体积(VOF)方法直接数值模拟了不同情况下的空腔液滴相互作用。研究了液滴-空腔尺寸比(β)和隔离参数(γ)对空腔-液滴动力学的影响。分析了这些参数对空腔射流速度Umax和能量耗散率ε的影响。空腔射流速度(Umax)随间隙参数的增大先增大后减小,随尺寸比的增大基本保持不变。在β=2.5(γ=0.7)和β=5(γ=1.2)的情况下,得到了最大的空腔射流速度。在给定驱动力的条件下,与隔离参数和尺寸比无关,空腔-油滴相互作用的能量耗散率为108 m2/s3数量级。这项工作的结果改善了目前对空泡-液滴相互作用的基本理解,并为开发空泡诱导的液滴破裂模型以预测液滴尺寸分布提供了有用的基础,从而增强了空泡在化学工业乳化中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Understanding cavity dynamics near deformable oil drop via numerical simulations
Cavitation is increasingly being used for producing liquid–liquid emulsions. Cavity collapse generates microscale high-speed jets, which play a crucial role in cavitation-driven emulsification. It is thus essential to investigate the interaction of cavity and droplet to improve the understanding of the cavitation-driven emulsification process. In this study, we have numerically investigated the interaction of a single cavity-droplet pair dispersed in a water medium mimicking the scenario occurring inside a hydrodynamic cavitation-based fluidic device. A direct numerical simulation utilizing the multi-fluid, volume of fluid (VOF) method has been used for simulating different scenarios of cavity droplet interactions. The effect of the droplet-cavity size ratio (β) and the stand-off parameter (γ) on cavity-droplet dynamics have been investigated. The influence of these parameters on cavity jet velocity Umax and energy dissipation rate (ε) was evaluated. Cavity jet velocity (Umax) increases at first, then decreases with the stand-off parameter whereas it increases and becomes almost constant for the size ratio. The maximum cavity jet velocity in the present work is obtained for the case β=2.5(γ=0.7) and β=5(γ=1.2). The energy dissipation rate for cavity-oil droplet interaction is of the order 108 m2/s3, irrespective of the stand-off parameter and size ratio for a given driving force. The results presented in this work improve the current fundamental understanding of cavity–drop interactions and provide a useful basis for developing cavitation-induced droplet breakage models for predicting droplet size distributions, enabling enhanced applications of cavitation for emulsification in the chemical industries.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Ultrasonics Sonochemistry
Ultrasonics Sonochemistry 化学-化学综合
CiteScore
15.80
自引率
11.90%
发文量
361
审稿时长
59 days
期刊介绍: Ultrasonics Sonochemistry stands as a premier international journal dedicated to the publication of high-quality research articles primarily focusing on chemical reactions and reactors induced by ultrasonic waves, known as sonochemistry. Beyond chemical reactions, the journal also welcomes contributions related to cavitation-induced events and processing, including sonoluminescence, and the transformation of materials on chemical, physical, and biological levels. Since its inception in 1994, Ultrasonics Sonochemistry has consistently maintained a top ranking in the "Acoustics" category, reflecting its esteemed reputation in the field. The journal publishes exceptional papers covering various areas of ultrasonics and sonochemistry. Its contributions are highly regarded by both academia and industry stakeholders, demonstrating its relevance and impact in advancing research and innovation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信