Wenya Yan , Peixuan Dong , Qiyu Zhang , Yongfeng Zhang , Ruhui Deng , Luojie Zhu , Tao Wang , Jianbing Shi , Junge Zhi , Bin Tong , Peng Sun , Zhengxu Cai , Yuping Dong
{"title":"簇化触发室温磷光合成聚合物材料","authors":"Wenya Yan , Peixuan Dong , Qiyu Zhang , Yongfeng Zhang , Ruhui Deng , Luojie Zhu , Tao Wang , Jianbing Shi , Junge Zhi , Bin Tong , Peng Sun , Zhengxu Cai , Yuping Dong","doi":"10.1016/j.ccr.2025.216629","DOIUrl":null,"url":null,"abstract":"<div><div>Clusterization-triggered room-temperature phosphorescent (CTRTP) polymeric materials do not contain classical chromophores, and possess the advantages of long emission lifetime, robust mechanical properties, good processability and low biotoxicity, holding immense potential for applications across various fields, including flexible displays, organic optoelectronic devices, and in vivo imaging. In recent years, considerable progress has been made in this field, leading to an expanded variety of polymeric materials, a deeper understanding of the photo-luminescence mechanisms, and substantial improvements in the emission properties. This review provides a comprehensive overview of the research advancements in the CTRTP synthetic polymeric materials. It begins with a discussion of the photo-luminescence mechanisms, offering a detailed introduction of the variety of CTRTP synthetic polymeric materials. Next, the key strategies to construct the CTRTP polymeric materials are summarized, including introducing heteroatoms, crystallization, and ionization. This review also explores the practical applications of CTRTP polymeric materials, particularly in anti-counterfeiting and information encryption. The final section highlights the current research progress and offers perspectives on future directions for the CTRTP synthetic polymeric materials. It's highly anticipated that this review will provide guidance for the continued development of CTRTP polymeric materials.</div></div>","PeriodicalId":289,"journal":{"name":"Coordination Chemistry Reviews","volume":"535 ","pages":"Article 216629"},"PeriodicalIF":20.3000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Clusterization-triggered room-temperature phosphorescent synthetic polymeric materials\",\"authors\":\"Wenya Yan , Peixuan Dong , Qiyu Zhang , Yongfeng Zhang , Ruhui Deng , Luojie Zhu , Tao Wang , Jianbing Shi , Junge Zhi , Bin Tong , Peng Sun , Zhengxu Cai , Yuping Dong\",\"doi\":\"10.1016/j.ccr.2025.216629\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Clusterization-triggered room-temperature phosphorescent (CTRTP) polymeric materials do not contain classical chromophores, and possess the advantages of long emission lifetime, robust mechanical properties, good processability and low biotoxicity, holding immense potential for applications across various fields, including flexible displays, organic optoelectronic devices, and in vivo imaging. In recent years, considerable progress has been made in this field, leading to an expanded variety of polymeric materials, a deeper understanding of the photo-luminescence mechanisms, and substantial improvements in the emission properties. This review provides a comprehensive overview of the research advancements in the CTRTP synthetic polymeric materials. It begins with a discussion of the photo-luminescence mechanisms, offering a detailed introduction of the variety of CTRTP synthetic polymeric materials. Next, the key strategies to construct the CTRTP polymeric materials are summarized, including introducing heteroatoms, crystallization, and ionization. This review also explores the practical applications of CTRTP polymeric materials, particularly in anti-counterfeiting and information encryption. The final section highlights the current research progress and offers perspectives on future directions for the CTRTP synthetic polymeric materials. It's highly anticipated that this review will provide guidance for the continued development of CTRTP polymeric materials.</div></div>\",\"PeriodicalId\":289,\"journal\":{\"name\":\"Coordination Chemistry Reviews\",\"volume\":\"535 \",\"pages\":\"Article 216629\"},\"PeriodicalIF\":20.3000,\"publicationDate\":\"2025-03-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Coordination Chemistry Reviews\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0010854525001997\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Coordination Chemistry Reviews","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010854525001997","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
Clusterization-triggered room-temperature phosphorescent (CTRTP) polymeric materials do not contain classical chromophores, and possess the advantages of long emission lifetime, robust mechanical properties, good processability and low biotoxicity, holding immense potential for applications across various fields, including flexible displays, organic optoelectronic devices, and in vivo imaging. In recent years, considerable progress has been made in this field, leading to an expanded variety of polymeric materials, a deeper understanding of the photo-luminescence mechanisms, and substantial improvements in the emission properties. This review provides a comprehensive overview of the research advancements in the CTRTP synthetic polymeric materials. It begins with a discussion of the photo-luminescence mechanisms, offering a detailed introduction of the variety of CTRTP synthetic polymeric materials. Next, the key strategies to construct the CTRTP polymeric materials are summarized, including introducing heteroatoms, crystallization, and ionization. This review also explores the practical applications of CTRTP polymeric materials, particularly in anti-counterfeiting and information encryption. The final section highlights the current research progress and offers perspectives on future directions for the CTRTP synthetic polymeric materials. It's highly anticipated that this review will provide guidance for the continued development of CTRTP polymeric materials.
期刊介绍:
Coordination Chemistry Reviews offers rapid publication of review articles on current and significant topics in coordination chemistry, encompassing organometallic, supramolecular, theoretical, and bioinorganic chemistry. It also covers catalysis, materials chemistry, and metal-organic frameworks from a coordination chemistry perspective. Reviews summarize recent developments or discuss specific techniques, welcoming contributions from both established and emerging researchers.
The journal releases special issues on timely subjects, including those featuring contributions from specific regions or conferences. Occasional full-length book articles are also featured. Additionally, special volumes cover annual reviews of main group chemistry, transition metal group chemistry, and organometallic chemistry. These comprehensive reviews are vital resources for those engaged in coordination chemistry, further establishing Coordination Chemistry Reviews as a hub for insightful surveys in inorganic and physical inorganic chemistry.