{"title":"O(VE) time algorithms for the Grundy (First-Fit) chromatic number of block graphs and graphs with large girth","authors":"Manouchehr Zaker","doi":"10.1016/j.disc.2025.114502","DOIUrl":null,"url":null,"abstract":"<div><div>The Grundy (or First-Fit) chromatic number of a graph <span><math><mi>G</mi><mo>=</mo><mo>(</mo><mi>V</mi><mo>,</mo><mi>E</mi><mo>)</mo></math></span>, denoted by <span><math><mi>Γ</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> (or <span><math><msub><mrow><mi>χ</mi></mrow><mrow><msub><mrow></mrow><mrow><mi>FF</mi></mrow></msub></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo></math></span>), is the maximum number of colors used by a First-Fit (greedy) coloring of <em>G</em>. The determining <span><math><mi>Γ</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> is <span>NP</span>-complete for various classes of graphs. Also there exists a constant <span><math><mi>c</mi><mo>></mo><mn>0</mn></math></span> such that the Grundy number is hard to approximate within the ratio <em>c</em>. We first obtain an <span><math><mi>O</mi><mo>(</mo><mi>V</mi><mi>E</mi><mo>)</mo></math></span> algorithm to determine the Grundy number of block graphs i.e. graphs in which every biconnected component is a complete graph. We prove that the Grundy number of a general graph <em>G</em> with cut-vertices is upper bounded by the Grundy number of a block graph corresponding to <em>G</em>. This provides a reasonable upper bound for the Grundy number of graphs with cut-vertices. Next, define <span><math><msub><mrow><mi>Δ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo><mo>=</mo><msub><mrow><mi>max</mi></mrow><mrow><mi>u</mi><mo>∈</mo><mi>V</mi></mrow></msub><mo></mo><mspace></mspace><msub><mrow><mi>max</mi></mrow><mrow><mi>v</mi><mo>∈</mo><mi>N</mi><mo>(</mo><mi>u</mi><mo>)</mo><mo>:</mo><mi>d</mi><mo>(</mo><mi>v</mi><mo>)</mo><mo>≤</mo><mi>d</mi><mo>(</mo><mi>u</mi><mo>)</mo></mrow></msub><mo></mo><mi>d</mi><mo>(</mo><mi>v</mi><mo>)</mo></math></span>. We obtain an <span><math><mi>O</mi><mo>(</mo><mi>V</mi><mi>E</mi><mo>)</mo></math></span> algorithm to determine <span><math><mi>Γ</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> for graphs <em>G</em> whose girth <em>g</em> is at least <span><math><mn>2</mn><msub><mrow><mi>Δ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo><mo>+</mo><mn>1</mn></math></span>. This algorithm provides a polynomial time approximation algorithm within ratio <span><math><mi>min</mi><mo></mo><mo>{</mo><mn>1</mn><mo>,</mo><mo>(</mo><mi>g</mi><mo>+</mo><mn>1</mn><mo>)</mo><mo>/</mo><mo>(</mo><mn>2</mn><msub><mrow><mi>Δ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo><mo>+</mo><mn>2</mn><mo>)</mo><mo>}</mo></math></span> for <span><math><mi>Γ</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> of general graphs <em>G</em> with girth <em>g</em>.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 9","pages":"Article 114502"},"PeriodicalIF":0.7000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012365X25001104","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
图 G=(V,E) 的 Grundy(或 First-Fit)色度数用 Γ(G)(或 χFF(G))表示,是 G 的 First-Fit(贪婪)着色所使用的最大颜色数。我们首先获得了一种 O(VE) 算法来确定块图的格兰迪数,即每个双连接组件都是完整图的图。我们证明,具有切顶的一般图 G 的格兰迪数的上限是与 G 相对应的块图的格兰迪数,这为具有切顶的图的格兰迪数提供了合理的上限。接下来,定义 Δ2(G)=maxu∈Vmaxv∈N(u):d(v)≤d(u)d(v)。对于周长 g 至少为 2Δ2(G)+1 的图 G,我们得到了一种确定 Γ(G) 的 O(VE) 算法。该算法为周长为 g 的一般图 G 的 Γ(G) 提供了一个比率为 min{1,(g+1)/(2Δ2(G)+2)} 的多项式时间近似算法。
O(VE) time algorithms for the Grundy (First-Fit) chromatic number of block graphs and graphs with large girth
The Grundy (or First-Fit) chromatic number of a graph , denoted by (or ), is the maximum number of colors used by a First-Fit (greedy) coloring of G. The determining is NP-complete for various classes of graphs. Also there exists a constant such that the Grundy number is hard to approximate within the ratio c. We first obtain an algorithm to determine the Grundy number of block graphs i.e. graphs in which every biconnected component is a complete graph. We prove that the Grundy number of a general graph G with cut-vertices is upper bounded by the Grundy number of a block graph corresponding to G. This provides a reasonable upper bound for the Grundy number of graphs with cut-vertices. Next, define . We obtain an algorithm to determine for graphs G whose girth g is at least . This algorithm provides a polynomial time approximation algorithm within ratio for of general graphs G with girth g.
期刊介绍:
Discrete Mathematics provides a common forum for significant research in many areas of discrete mathematics and combinatorics. Among the fields covered by Discrete Mathematics are graph and hypergraph theory, enumeration, coding theory, block designs, the combinatorics of partially ordered sets, extremal set theory, matroid theory, algebraic combinatorics, discrete geometry, matrices, and discrete probability theory.
Items in the journal include research articles (Contributions or Notes, depending on length) and survey/expository articles (Perspectives). Efforts are made to process the submission of Notes (short articles) quickly. The Perspectives section features expository articles accessible to a broad audience that cast new light or present unifying points of view on well-known or insufficiently-known topics.