有限域上对角多项式系统的零

IF 1.2 3区 数学 Q1 MATHEMATICS
Yulu Feng
{"title":"有限域上对角多项式系统的零","authors":"Yulu Feng","doi":"10.1016/j.ffa.2025.102623","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span> be the finite field of characteristic <em>p</em>, having <span><math><mi>q</mi><mo>=</mo><msup><mrow><mi>p</mi></mrow><mrow><mi>a</mi></mrow></msup></math></span> elements and let <span><math><msubsup><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow><mrow><mo>⁎</mo></mrow></msubsup></math></span> be the unit group of <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span>. Let <span><math><mi>N</mi><mo>(</mo><mi>V</mi><mo>)</mo></math></span> be the number of <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span>-rational points of the affine algebraic variety defined by the simultaneous vanishing of the diagonal polynomials <span><math><msub><mrow><mi>f</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>(</mo><mi>x</mi><mo>)</mo><mo>=</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>i</mi><mn>1</mn></mrow></msub><msubsup><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow><mrow><msub><mrow><mi>d</mi></mrow><mrow><mi>i</mi><mn>1</mn></mrow></msub></mrow></msubsup><mo>+</mo><mo>⋯</mo><mo>+</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>i</mi><mi>n</mi></mrow></msub><msubsup><mrow><mi>x</mi></mrow><mrow><mi>n</mi></mrow><mrow><msub><mrow><mi>d</mi></mrow><mrow><mi>i</mi><mi>n</mi></mrow></msub></mrow></msubsup><mo>+</mo><msub><mrow><mi>c</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span>, <span><math><mi>i</mi><mo>=</mo><mn>1</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>r</mi></math></span>, where <span><math><msub><mrow><mi>a</mi></mrow><mrow><mi>i</mi><mi>j</mi></mrow></msub><mo>∈</mo><msubsup><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow><mrow><mo>⁎</mo></mrow></msubsup></math></span>, <span><math><msub><mrow><mi>c</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>∈</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span> and <span><math><msub><mrow><mi>d</mi></mrow><mrow><mi>i</mi><mi>j</mi></mrow></msub></math></span> is a nonnegative integer for <span><math><mn>1</mn><mo>≤</mo><mi>i</mi><mo>≤</mo><mi>r</mi><mo>,</mo><mn>1</mn><mo>≤</mo><mi>j</mi><mo>≤</mo><mi>n</mi></math></span>. By using properties of Teichmüller representations and the Stickelberger relation applied by Ax and Wan, we show that<span><span><span><math><msub><mrow><mi>ord</mi></mrow><mrow><mi>q</mi></mrow></msub><mi>N</mi><mo>(</mo><mi>V</mi><mo>)</mo><mo>≥</mo><mo>⌈</mo><munderover><mo>∑</mo><mrow><mi>j</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>n</mi></mrow></munderover><mfrac><mrow><mn>1</mn></mrow><mrow><munder><mi>max</mi><mrow><mn>1</mn><mo>≤</mo><mi>i</mi><mo>≤</mo><mi>r</mi></mrow></munder><mo>⁡</mo><mo>{</mo><msub><mrow><mi>d</mi></mrow><mrow><mi>i</mi><mi>j</mi></mrow></msub><mo>}</mo></mrow></mfrac><mo>⌉</mo><mo>−</mo><mi>r</mi></math></span></span></span> if <span><math><msub><mrow><mi>max</mi></mrow><mrow><mn>1</mn><mo>≤</mo><mi>i</mi><mo>≤</mo><mi>r</mi></mrow></msub><mo>⁡</mo><mo>{</mo><msub><mrow><mi>d</mi></mrow><mrow><mi>i</mi><mi>j</mi></mrow></msub><mo>}</mo><mo>&gt;</mo><mn>0</mn></math></span> for all integers <em>j</em> with <span><math><mn>1</mn><mo>≤</mo><mi>j</mi><mo>≤</mo><mi>n</mi></math></span>, this improves Cao's result which announces the same statement under the condition <span><math><msub><mrow><mi>d</mi></mrow><mrow><mi>i</mi><mi>j</mi></mrow></msub><mo>&gt;</mo><mn>0</mn></math></span> for all integers <span><math><mi>i</mi><mo>,</mo><mi>j</mi></math></span> with <span><math><mn>1</mn><mo>≤</mo><mi>i</mi><mo>≤</mo><mi>r</mi><mo>,</mo><mn>1</mn><mo>≤</mo><mi>j</mi><mo>≤</mo><mi>n</mi></math></span>. For any nonnegative integer <em>m</em>, let <span><math><mi>σ</mi><mo>(</mo><mi>m</mi><mo>)</mo></math></span> be the digital sum of <em>m</em> in base <em>p</em>. Then we set up a <em>p</em>-adic version of the first estimate that<span><span><span><math><msub><mrow><mi>ord</mi></mrow><mrow><mi>p</mi></mrow></msub><mi>N</mi><mo>(</mo><mi>V</mi><mo>)</mo><mo>≥</mo><mo>⌈</mo><mi>a</mi><munderover><mo>∑</mo><mrow><mi>j</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>n</mi></mrow></munderover><mfrac><mrow><mn>1</mn></mrow><mrow><munder><mi>max</mi><mrow><mn>1</mn><mo>≤</mo><mi>i</mi><mo>≤</mo><mi>r</mi></mrow></munder><mo>⁡</mo><mo>{</mo><mi>σ</mi><mo>(</mo><msub><mrow><mi>d</mi></mrow><mrow><mi>i</mi><mi>j</mi></mrow></msub><mo>)</mo><mo>}</mo></mrow></mfrac><mo>⌉</mo><mo>−</mo><mi>a</mi><mi>r</mi><mo>,</mo></math></span></span></span> which generalizes Moreno and Castro's result from one diagonal polynomial to a system of diagonal polynomials. This also improves the Ax-Katz-Moreno-Moreno theorem in certain cases. Moreover, we extend the study to a more general variety defined by a system of generalized diagonal polynomials.</div></div>","PeriodicalId":50446,"journal":{"name":"Finite Fields and Their Applications","volume":"106 ","pages":"Article 102623"},"PeriodicalIF":1.2000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Zeros of a system of diagonal polynomials over finite fields\",\"authors\":\"Yulu Feng\",\"doi\":\"10.1016/j.ffa.2025.102623\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Let <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span> be the finite field of characteristic <em>p</em>, having <span><math><mi>q</mi><mo>=</mo><msup><mrow><mi>p</mi></mrow><mrow><mi>a</mi></mrow></msup></math></span> elements and let <span><math><msubsup><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow><mrow><mo>⁎</mo></mrow></msubsup></math></span> be the unit group of <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span>. Let <span><math><mi>N</mi><mo>(</mo><mi>V</mi><mo>)</mo></math></span> be the number of <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span>-rational points of the affine algebraic variety defined by the simultaneous vanishing of the diagonal polynomials <span><math><msub><mrow><mi>f</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>(</mo><mi>x</mi><mo>)</mo><mo>=</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>i</mi><mn>1</mn></mrow></msub><msubsup><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow><mrow><msub><mrow><mi>d</mi></mrow><mrow><mi>i</mi><mn>1</mn></mrow></msub></mrow></msubsup><mo>+</mo><mo>⋯</mo><mo>+</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>i</mi><mi>n</mi></mrow></msub><msubsup><mrow><mi>x</mi></mrow><mrow><mi>n</mi></mrow><mrow><msub><mrow><mi>d</mi></mrow><mrow><mi>i</mi><mi>n</mi></mrow></msub></mrow></msubsup><mo>+</mo><msub><mrow><mi>c</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span>, <span><math><mi>i</mi><mo>=</mo><mn>1</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>r</mi></math></span>, where <span><math><msub><mrow><mi>a</mi></mrow><mrow><mi>i</mi><mi>j</mi></mrow></msub><mo>∈</mo><msubsup><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow><mrow><mo>⁎</mo></mrow></msubsup></math></span>, <span><math><msub><mrow><mi>c</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>∈</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span> and <span><math><msub><mrow><mi>d</mi></mrow><mrow><mi>i</mi><mi>j</mi></mrow></msub></math></span> is a nonnegative integer for <span><math><mn>1</mn><mo>≤</mo><mi>i</mi><mo>≤</mo><mi>r</mi><mo>,</mo><mn>1</mn><mo>≤</mo><mi>j</mi><mo>≤</mo><mi>n</mi></math></span>. By using properties of Teichmüller representations and the Stickelberger relation applied by Ax and Wan, we show that<span><span><span><math><msub><mrow><mi>ord</mi></mrow><mrow><mi>q</mi></mrow></msub><mi>N</mi><mo>(</mo><mi>V</mi><mo>)</mo><mo>≥</mo><mo>⌈</mo><munderover><mo>∑</mo><mrow><mi>j</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>n</mi></mrow></munderover><mfrac><mrow><mn>1</mn></mrow><mrow><munder><mi>max</mi><mrow><mn>1</mn><mo>≤</mo><mi>i</mi><mo>≤</mo><mi>r</mi></mrow></munder><mo>⁡</mo><mo>{</mo><msub><mrow><mi>d</mi></mrow><mrow><mi>i</mi><mi>j</mi></mrow></msub><mo>}</mo></mrow></mfrac><mo>⌉</mo><mo>−</mo><mi>r</mi></math></span></span></span> if <span><math><msub><mrow><mi>max</mi></mrow><mrow><mn>1</mn><mo>≤</mo><mi>i</mi><mo>≤</mo><mi>r</mi></mrow></msub><mo>⁡</mo><mo>{</mo><msub><mrow><mi>d</mi></mrow><mrow><mi>i</mi><mi>j</mi></mrow></msub><mo>}</mo><mo>&gt;</mo><mn>0</mn></math></span> for all integers <em>j</em> with <span><math><mn>1</mn><mo>≤</mo><mi>j</mi><mo>≤</mo><mi>n</mi></math></span>, this improves Cao's result which announces the same statement under the condition <span><math><msub><mrow><mi>d</mi></mrow><mrow><mi>i</mi><mi>j</mi></mrow></msub><mo>&gt;</mo><mn>0</mn></math></span> for all integers <span><math><mi>i</mi><mo>,</mo><mi>j</mi></math></span> with <span><math><mn>1</mn><mo>≤</mo><mi>i</mi><mo>≤</mo><mi>r</mi><mo>,</mo><mn>1</mn><mo>≤</mo><mi>j</mi><mo>≤</mo><mi>n</mi></math></span>. For any nonnegative integer <em>m</em>, let <span><math><mi>σ</mi><mo>(</mo><mi>m</mi><mo>)</mo></math></span> be the digital sum of <em>m</em> in base <em>p</em>. Then we set up a <em>p</em>-adic version of the first estimate that<span><span><span><math><msub><mrow><mi>ord</mi></mrow><mrow><mi>p</mi></mrow></msub><mi>N</mi><mo>(</mo><mi>V</mi><mo>)</mo><mo>≥</mo><mo>⌈</mo><mi>a</mi><munderover><mo>∑</mo><mrow><mi>j</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>n</mi></mrow></munderover><mfrac><mrow><mn>1</mn></mrow><mrow><munder><mi>max</mi><mrow><mn>1</mn><mo>≤</mo><mi>i</mi><mo>≤</mo><mi>r</mi></mrow></munder><mo>⁡</mo><mo>{</mo><mi>σ</mi><mo>(</mo><msub><mrow><mi>d</mi></mrow><mrow><mi>i</mi><mi>j</mi></mrow></msub><mo>)</mo><mo>}</mo></mrow></mfrac><mo>⌉</mo><mo>−</mo><mi>a</mi><mi>r</mi><mo>,</mo></math></span></span></span> which generalizes Moreno and Castro's result from one diagonal polynomial to a system of diagonal polynomials. This also improves the Ax-Katz-Moreno-Moreno theorem in certain cases. Moreover, we extend the study to a more general variety defined by a system of generalized diagonal polynomials.</div></div>\",\"PeriodicalId\":50446,\"journal\":{\"name\":\"Finite Fields and Their Applications\",\"volume\":\"106 \",\"pages\":\"Article 102623\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-03-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Finite Fields and Their Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S107157972500053X\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Finite Fields and Their Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S107157972500053X","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设Fq为特征p的有限域,有q=pa个元,设Fq为Fq的单元群。设N(V)是由对角多项式fi(x)=ai1x1di1+⋯+ainxndin+ci, i=1,…,r同时消失所定义的仿射代数变量的Fq-有理点的个数,其中aij∈Fq, ci∈Fq, dij是1≤i≤r,1≤j≤N的非负整数。利用teichmller表示的性质和Ax和Wan应用的Stickelberger关系,证明了对于1≤j≤n的所有整数j,当max1≤i≤r (dij)}>;0时,ordqn (V)≥≥∑j=1n1max1≤i≤r (dij) >;0时,对于1≤i≤r,1≤j≤n的所有整数i,j,在条件dij>;0下,Cao的结论是相同的。对于任意非负整数m,设σ(m)为以p为底数的m的数字和。然后,我们建立了ordpn (V)≥≥∑a∑j=1n1max1≤i≤r (σ(dij)})²- ar的第一个估计的p进版本,将Moreno和Castro的结果从一个对角多项式推广到一个对角多项式系统。这也在某些情况下改进了Ax-Katz-Moreno-Moreno定理。此外,我们将研究扩展到由广义对角多项式系统定义的更一般的变量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Zeros of a system of diagonal polynomials over finite fields
Let Fq be the finite field of characteristic p, having q=pa elements and let Fq be the unit group of Fq. Let N(V) be the number of Fq-rational points of the affine algebraic variety defined by the simultaneous vanishing of the diagonal polynomials fi(x)=ai1x1di1++ainxndin+ci, i=1,,r, where aijFq, ciFq and dij is a nonnegative integer for 1ir,1jn. By using properties of Teichmüller representations and the Stickelberger relation applied by Ax and Wan, we show thatordqN(V)j=1n1max1ir{dij}r if max1ir{dij}>0 for all integers j with 1jn, this improves Cao's result which announces the same statement under the condition dij>0 for all integers i,j with 1ir,1jn. For any nonnegative integer m, let σ(m) be the digital sum of m in base p. Then we set up a p-adic version of the first estimate thatordpN(V)aj=1n1max1ir{σ(dij)}ar, which generalizes Moreno and Castro's result from one diagonal polynomial to a system of diagonal polynomials. This also improves the Ax-Katz-Moreno-Moreno theorem in certain cases. Moreover, we extend the study to a more general variety defined by a system of generalized diagonal polynomials.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.00
自引率
20.00%
发文量
133
审稿时长
6-12 weeks
期刊介绍: Finite Fields and Their Applications is a peer-reviewed technical journal publishing papers in finite field theory as well as in applications of finite fields. As a result of applications in a wide variety of areas, finite fields are increasingly important in several areas of mathematics, including linear and abstract algebra, number theory and algebraic geometry, as well as in computer science, statistics, information theory, and engineering. For cohesion, and because so many applications rely on various theoretical properties of finite fields, it is essential that there be a core of high-quality papers on theoretical aspects. In addition, since much of the vitality of the area comes from computational problems, the journal publishes papers on computational aspects of finite fields as well as on algorithms and complexity of finite field-related methods. The journal also publishes papers in various applications including, but not limited to, algebraic coding theory, cryptology, combinatorial design theory, pseudorandom number generation, and linear recurring sequences. There are other areas of application to be included, but the important point is that finite fields play a nontrivial role in the theory, application, or algorithm.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信