城市道路基础结构监测多尺度gan驱动GPR数据反演

IF 9.6 1区 工程技术 Q1 CONSTRUCTION & BUILDING TECHNOLOGY
Feifei Hou , Xingyu Qian , Qiwen Meng , Jian Dong , Fei Lyu
{"title":"城市道路基础结构监测多尺度gan驱动GPR数据反演","authors":"Feifei Hou ,&nbsp;Xingyu Qian ,&nbsp;Qiwen Meng ,&nbsp;Jian Dong ,&nbsp;Fei Lyu","doi":"10.1016/j.autcon.2025.106140","DOIUrl":null,"url":null,"abstract":"<div><div>Accurate monitoring and visualization of urban road substructure and targets are impeded by challenges in inverting Ground Penetrating Radar (GPR) data, especially under multiple inversion objectives and complex road conditions. To address this challenge, a deep learning-based multi-scale inversion approach, termed MSInv-GPR, is proposed, which builds on the Pix2pix Generative Adversarial Network (Pix2pixGAN) framework. This approach introduces dual-channel inputs to improve inversion accuracy, integrates a multi-scale convolution module along with an Efficient Multi-scale Attention (EMA) module to better capture characteristic waveforms, and incorporates a loss function strategy to strengthen adversarial training and accelerate convergence. Ablation studies validate that MSInv-GPR achieves Structural Similarity Index (SSIM) of 99.75 %, Peak Signal-to-Noise Ratio (PSNR) of 47.9014, and Mean Squared Error (MSE) of 12.5825 for 8-bit images, with 51.69 % improvement in Power Supply Modulation Ratio (PSMR) and an increase in discriminator loss from 0.1132 to 1.1603 compared to a baseline.</div></div>","PeriodicalId":8660,"journal":{"name":"Automation in Construction","volume":"174 ","pages":"Article 106140"},"PeriodicalIF":9.6000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-scale GAN-driven GPR data inversion for monitoring urban road substructure\",\"authors\":\"Feifei Hou ,&nbsp;Xingyu Qian ,&nbsp;Qiwen Meng ,&nbsp;Jian Dong ,&nbsp;Fei Lyu\",\"doi\":\"10.1016/j.autcon.2025.106140\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Accurate monitoring and visualization of urban road substructure and targets are impeded by challenges in inverting Ground Penetrating Radar (GPR) data, especially under multiple inversion objectives and complex road conditions. To address this challenge, a deep learning-based multi-scale inversion approach, termed MSInv-GPR, is proposed, which builds on the Pix2pix Generative Adversarial Network (Pix2pixGAN) framework. This approach introduces dual-channel inputs to improve inversion accuracy, integrates a multi-scale convolution module along with an Efficient Multi-scale Attention (EMA) module to better capture characteristic waveforms, and incorporates a loss function strategy to strengthen adversarial training and accelerate convergence. Ablation studies validate that MSInv-GPR achieves Structural Similarity Index (SSIM) of 99.75 %, Peak Signal-to-Noise Ratio (PSNR) of 47.9014, and Mean Squared Error (MSE) of 12.5825 for 8-bit images, with 51.69 % improvement in Power Supply Modulation Ratio (PSMR) and an increase in discriminator loss from 0.1132 to 1.1603 compared to a baseline.</div></div>\",\"PeriodicalId\":8660,\"journal\":{\"name\":\"Automation in Construction\",\"volume\":\"174 \",\"pages\":\"Article 106140\"},\"PeriodicalIF\":9.6000,\"publicationDate\":\"2025-03-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Automation in Construction\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0926580525001803\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Automation in Construction","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0926580525001803","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

探地雷达(GPR)数据反演面临诸多挑战,特别是在多目标和复杂路况下,阻碍了城市道路基础结构和目标的准确监测和可视化。为了应对这一挑战,提出了一种基于深度学习的多尺度反演方法,称为msv - gpr,该方法建立在Pix2pix生成对抗网络(Pix2pixGAN)框架之上。该方法引入双通道输入以提高反演精度,集成多尺度卷积模块和高效多尺度注意(EMA)模块以更好地捕获特征波形,并结合损失函数策略以加强对抗性训练并加速收敛。消融研究证实,msv - gpr在8位图像上实现了99.75%的结构相似指数(SSIM), 47.9014的峰值信噪比(PSNR)和12.5825的均方误差(MSE),与基线相比,电源调制比(PSMR)提高了51.69%,鉴别器损失从0.1132增加到1.1603。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-scale GAN-driven GPR data inversion for monitoring urban road substructure
Accurate monitoring and visualization of urban road substructure and targets are impeded by challenges in inverting Ground Penetrating Radar (GPR) data, especially under multiple inversion objectives and complex road conditions. To address this challenge, a deep learning-based multi-scale inversion approach, termed MSInv-GPR, is proposed, which builds on the Pix2pix Generative Adversarial Network (Pix2pixGAN) framework. This approach introduces dual-channel inputs to improve inversion accuracy, integrates a multi-scale convolution module along with an Efficient Multi-scale Attention (EMA) module to better capture characteristic waveforms, and incorporates a loss function strategy to strengthen adversarial training and accelerate convergence. Ablation studies validate that MSInv-GPR achieves Structural Similarity Index (SSIM) of 99.75 %, Peak Signal-to-Noise Ratio (PSNR) of 47.9014, and Mean Squared Error (MSE) of 12.5825 for 8-bit images, with 51.69 % improvement in Power Supply Modulation Ratio (PSMR) and an increase in discriminator loss from 0.1132 to 1.1603 compared to a baseline.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Automation in Construction
Automation in Construction 工程技术-工程:土木
CiteScore
19.20
自引率
16.50%
发文量
563
审稿时长
8.5 months
期刊介绍: Automation in Construction is an international journal that focuses on publishing original research papers related to the use of Information Technologies in various aspects of the construction industry. The journal covers topics such as design, engineering, construction technologies, and the maintenance and management of constructed facilities. The scope of Automation in Construction is extensive and covers all stages of the construction life cycle. This includes initial planning and design, construction of the facility, operation and maintenance, as well as the eventual dismantling and recycling of buildings and engineering structures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信