Shiqi Lan, Li Han, Chenyu Yao, Shijian Tian, Libo Zhang, Mengjie Jiang, Xiaokai Pan, Yingdong Wei, Yichong Zhang, Kaixuan Zhang, Huaizhong Xing, Xiaoshuang Chen, Lin Wang
{"title":"Sub-Skin-Depth Nanoslit Integrated Topological Insulator Devices for Self-Driven Broadband Terahertz Detection and Imaging","authors":"Shiqi Lan, Li Han, Chenyu Yao, Shijian Tian, Libo Zhang, Mengjie Jiang, Xiaokai Pan, Yingdong Wei, Yichong Zhang, Kaixuan Zhang, Huaizhong Xing, Xiaoshuang Chen, Lin Wang","doi":"10.1002/lpor.202402091","DOIUrl":null,"url":null,"abstract":"The advancement of terahertz technology is primarily fueled by the imperative for room-temperature operation with high sensitivity, high integration, and broadband detection capabilities. Nevertheless, the traditional semiconductor materials in terahertz detectors continue to grapple with obstacles, notably intricate integration and processing complexities. The unique electronic structures and non-trivial topological properties of two-dimensional topological materials bring new possibilities and perspectives for high-performance terahertz low-energy photon detection. Here, an antenna combined with the topological insulator GeBi<sub>4</sub>Te<sub>7</sub> and an ultrashort channel integration technique is utilized to significantly enhance the electromagnetic response in a confined region by compressing and localizing the optical field in the spatial dimension. This strategy achieves a preferential flow of hot carriers through enhanced light-matter interactions while satisfying the enhanced bandwidth and response speed of the detector. The sensitivity of the detector is 3.04 A·W<sup>−1</sup> at 0.81 THz with a noise equivalent power of less than 15.8 pW·Hz<sup>−0.5</sup> and a response time of less than 5 µs. These research results provide a brand-new opportunity to develop highly sensitive, highly integrated, and broadband terahertz detectors, enabling exploration across a diverse array of application domains.","PeriodicalId":204,"journal":{"name":"Laser & Photonics Reviews","volume":"13 1","pages":""},"PeriodicalIF":9.8000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Laser & Photonics Reviews","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1002/lpor.202402091","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
Sub-Skin-Depth Nanoslit Integrated Topological Insulator Devices for Self-Driven Broadband Terahertz Detection and Imaging
The advancement of terahertz technology is primarily fueled by the imperative for room-temperature operation with high sensitivity, high integration, and broadband detection capabilities. Nevertheless, the traditional semiconductor materials in terahertz detectors continue to grapple with obstacles, notably intricate integration and processing complexities. The unique electronic structures and non-trivial topological properties of two-dimensional topological materials bring new possibilities and perspectives for high-performance terahertz low-energy photon detection. Here, an antenna combined with the topological insulator GeBi4Te7 and an ultrashort channel integration technique is utilized to significantly enhance the electromagnetic response in a confined region by compressing and localizing the optical field in the spatial dimension. This strategy achieves a preferential flow of hot carriers through enhanced light-matter interactions while satisfying the enhanced bandwidth and response speed of the detector. The sensitivity of the detector is 3.04 A·W−1 at 0.81 THz with a noise equivalent power of less than 15.8 pW·Hz−0.5 and a response time of less than 5 µs. These research results provide a brand-new opportunity to develop highly sensitive, highly integrated, and broadband terahertz detectors, enabling exploration across a diverse array of application domains.
期刊介绍:
Laser & Photonics Reviews is a reputable journal that publishes high-quality Reviews, original Research Articles, and Perspectives in the field of photonics and optics. It covers both theoretical and experimental aspects, including recent groundbreaking research, specific advancements, and innovative applications.
As evidence of its impact and recognition, Laser & Photonics Reviews boasts a remarkable 2022 Impact Factor of 11.0, according to the Journal Citation Reports from Clarivate Analytics (2023). Moreover, it holds impressive rankings in the InCites Journal Citation Reports: in 2021, it was ranked 6th out of 101 in the field of Optics, 15th out of 161 in Applied Physics, and 12th out of 69 in Condensed Matter Physics.
The journal uses the ISSN numbers 1863-8880 for print and 1863-8899 for online publications.