{"title":"A “three-in-one” thermosensitive gel system that enhances mucus and biofilm penetration for the treatment of vulvovaginal candidiasis","authors":"Yameng Wang, Zhiyuan Wang, Qibin Li, Yangjun Feng, Jinling Li, Yuxiang Lu, JingYing Zhang, Xue Ke","doi":"10.1016/j.jconrel.2025.113666","DOIUrl":null,"url":null,"abstract":"<div><div>The special physiological barriers of women, such as vaginal mucus and self-cleaning behavior, pose great challenges for the treatment of vulvovaginal candidiasis (<em>VVC</em>), and the drug resistance caused by fungal biofilms limits the application of existing antifungal drugs. Based on this, we designed a “three-in-one” thermosensitive gel system (AF/BP Gel) loaded with antibiofilm nanoparticles (AF NPs) and mucus penetration-assisting nanoparticles (BP NPs) to achieve vaginal adhesion while enhancing mucus and biofilm penetration. AF NPs were loaded with farnesol (FAR) and amphotericin B (AMB), and FAR is one of quorum sensing molecules which can interfere with biofilm-related genes such as <em>ALS3</em>, <em>HWP1</em>, <em>RAS1</em>, <em>CPH1</em>, <em>EFG1</em>, <em>NRG1</em>, <em>TUP1</em>, <em>UME6</em>, and disperse mature biofilm, thus playing a synergic antibiofilm role with AMB. BP NPs was loaded with bromelain (BRO), which cleared the mucus barrier for AF NPs and help it penetrate deep into the infection. These two kinds of nanoparticles use the thermosensitive gel matrix to reach the surface of the vaginal mucosa uniformly and persistently to overcome the obstacle of vaginal self-cleaning. AF/BP Gel showed great anti-<em>candida albicans</em> activity <em>in vitro</em> and <em>in vivo</em>, and greatly improved the inflammatory conditions in <em>VVC</em> mice. Overall, this “three-in-one” thermosensitive gel system can overcome multiple physiological barriers and resist different periods of biofilm, providing a new platform for treating vagina-associated infections.</div></div>","PeriodicalId":15450,"journal":{"name":"Journal of Controlled Release","volume":"382 ","pages":"Article 113666"},"PeriodicalIF":10.5000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Controlled Release","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S016836592500286X","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
A “three-in-one” thermosensitive gel system that enhances mucus and biofilm penetration for the treatment of vulvovaginal candidiasis
The special physiological barriers of women, such as vaginal mucus and self-cleaning behavior, pose great challenges for the treatment of vulvovaginal candidiasis (VVC), and the drug resistance caused by fungal biofilms limits the application of existing antifungal drugs. Based on this, we designed a “three-in-one” thermosensitive gel system (AF/BP Gel) loaded with antibiofilm nanoparticles (AF NPs) and mucus penetration-assisting nanoparticles (BP NPs) to achieve vaginal adhesion while enhancing mucus and biofilm penetration. AF NPs were loaded with farnesol (FAR) and amphotericin B (AMB), and FAR is one of quorum sensing molecules which can interfere with biofilm-related genes such as ALS3, HWP1, RAS1, CPH1, EFG1, NRG1, TUP1, UME6, and disperse mature biofilm, thus playing a synergic antibiofilm role with AMB. BP NPs was loaded with bromelain (BRO), which cleared the mucus barrier for AF NPs and help it penetrate deep into the infection. These two kinds of nanoparticles use the thermosensitive gel matrix to reach the surface of the vaginal mucosa uniformly and persistently to overcome the obstacle of vaginal self-cleaning. AF/BP Gel showed great anti-candida albicans activity in vitro and in vivo, and greatly improved the inflammatory conditions in VVC mice. Overall, this “three-in-one” thermosensitive gel system can overcome multiple physiological barriers and resist different periods of biofilm, providing a new platform for treating vagina-associated infections.
期刊介绍:
The Journal of Controlled Release (JCR) proudly serves as the Official Journal of the Controlled Release Society and the Japan Society of Drug Delivery System.
Dedicated to the broad field of delivery science and technology, JCR publishes high-quality research articles covering drug delivery systems and all facets of formulations. This includes the physicochemical and biological properties of drugs, design and characterization of dosage forms, release mechanisms, in vivo testing, and formulation research and development across pharmaceutical, diagnostic, agricultural, environmental, cosmetic, and food industries.
Priority is given to manuscripts that contribute to the fundamental understanding of principles or demonstrate the advantages of novel technologies in terms of safety and efficacy over current clinical standards. JCR strives to be a leading platform for advancements in delivery science and technology.