{"title":"在废物管理实践中,地表沉积物作为遗留持久性有机污染物的汇和风险源","authors":"Hale Demirtepe","doi":"10.1016/j.envpol.2025.126128","DOIUrl":null,"url":null,"abstract":"<div><div>Persistent organic pollutants (POPs) such as polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs) are globally recognized contaminants due to their persistence, bioaccumulative properties, and toxicity. Despite regulatory efforts, these compounds continue to enter the environment through improper waste management practices, including shipbreaking activities. This study investigates the PCB and PBDE contamination of marine sediments along a 30 km coastline in Aliağa, Türkiye, involving one of the world's largest shipbreaking yards. Sixteen surface sediment samples were analyzed for 46 PCB and 23 PBDE congeners. The results revealed Σ<sub>46</sub>PCBs ranging from 5.17 to 4750 ng/g and Σ<sub>23</sub>PBDEs from non-detectable to 5053 ng/g. Shipbreaking activities exhibited the highest concentrations, while the sediments sampled close to beaches had the lowest POP contamination. Source apportionment using principal component analysis (PCA) identified distinct contamination patterns, associating higher-chlorinated PCBs with shipbreaking and lower-chlorinated PCBs and PBDEs with land-based industrial emissions and urban runoff. Ecological risk evaluation showed that most sediment samples exceeded sediment quality guidelines, with some PCB and PBDE congeners posing moderate to high risks to benthic ecosystems. Particularly, PCBs 28 and 52 exhibited low to high risk for almost all sediment samples. This study emphasizes the urgent need for improved waste management practices, particularly for POP-containing materials, to mitigate ecological risks. Shipbreaking yards are identified as hotspots for legacy POP contamination, necessitating international collaboration and stricter enforcement of environmental regulations as shipbreaking operations encompass cross-country transfer of wastes. Findings highlight the critical importance of remediation strategies to protect marine environments.</div></div>","PeriodicalId":311,"journal":{"name":"Environmental Pollution","volume":"373 ","pages":"Article 126128"},"PeriodicalIF":7.3000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Surface sediments as a sink and risk source for legacy POPs during waste management practices\",\"authors\":\"Hale Demirtepe\",\"doi\":\"10.1016/j.envpol.2025.126128\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Persistent organic pollutants (POPs) such as polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs) are globally recognized contaminants due to their persistence, bioaccumulative properties, and toxicity. Despite regulatory efforts, these compounds continue to enter the environment through improper waste management practices, including shipbreaking activities. This study investigates the PCB and PBDE contamination of marine sediments along a 30 km coastline in Aliağa, Türkiye, involving one of the world's largest shipbreaking yards. Sixteen surface sediment samples were analyzed for 46 PCB and 23 PBDE congeners. The results revealed Σ<sub>46</sub>PCBs ranging from 5.17 to 4750 ng/g and Σ<sub>23</sub>PBDEs from non-detectable to 5053 ng/g. Shipbreaking activities exhibited the highest concentrations, while the sediments sampled close to beaches had the lowest POP contamination. Source apportionment using principal component analysis (PCA) identified distinct contamination patterns, associating higher-chlorinated PCBs with shipbreaking and lower-chlorinated PCBs and PBDEs with land-based industrial emissions and urban runoff. Ecological risk evaluation showed that most sediment samples exceeded sediment quality guidelines, with some PCB and PBDE congeners posing moderate to high risks to benthic ecosystems. Particularly, PCBs 28 and 52 exhibited low to high risk for almost all sediment samples. This study emphasizes the urgent need for improved waste management practices, particularly for POP-containing materials, to mitigate ecological risks. Shipbreaking yards are identified as hotspots for legacy POP contamination, necessitating international collaboration and stricter enforcement of environmental regulations as shipbreaking operations encompass cross-country transfer of wastes. Findings highlight the critical importance of remediation strategies to protect marine environments.</div></div>\",\"PeriodicalId\":311,\"journal\":{\"name\":\"Environmental Pollution\",\"volume\":\"373 \",\"pages\":\"Article 126128\"},\"PeriodicalIF\":7.3000,\"publicationDate\":\"2025-03-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Pollution\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0269749125005019\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Pollution","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0269749125005019","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Surface sediments as a sink and risk source for legacy POPs during waste management practices
Persistent organic pollutants (POPs) such as polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs) are globally recognized contaminants due to their persistence, bioaccumulative properties, and toxicity. Despite regulatory efforts, these compounds continue to enter the environment through improper waste management practices, including shipbreaking activities. This study investigates the PCB and PBDE contamination of marine sediments along a 30 km coastline in Aliağa, Türkiye, involving one of the world's largest shipbreaking yards. Sixteen surface sediment samples were analyzed for 46 PCB and 23 PBDE congeners. The results revealed Σ46PCBs ranging from 5.17 to 4750 ng/g and Σ23PBDEs from non-detectable to 5053 ng/g. Shipbreaking activities exhibited the highest concentrations, while the sediments sampled close to beaches had the lowest POP contamination. Source apportionment using principal component analysis (PCA) identified distinct contamination patterns, associating higher-chlorinated PCBs with shipbreaking and lower-chlorinated PCBs and PBDEs with land-based industrial emissions and urban runoff. Ecological risk evaluation showed that most sediment samples exceeded sediment quality guidelines, with some PCB and PBDE congeners posing moderate to high risks to benthic ecosystems. Particularly, PCBs 28 and 52 exhibited low to high risk for almost all sediment samples. This study emphasizes the urgent need for improved waste management practices, particularly for POP-containing materials, to mitigate ecological risks. Shipbreaking yards are identified as hotspots for legacy POP contamination, necessitating international collaboration and stricter enforcement of environmental regulations as shipbreaking operations encompass cross-country transfer of wastes. Findings highlight the critical importance of remediation strategies to protect marine environments.
期刊介绍:
Environmental Pollution is an international peer-reviewed journal that publishes high-quality research papers and review articles covering all aspects of environmental pollution and its impacts on ecosystems and human health.
Subject areas include, but are not limited to:
• Sources and occurrences of pollutants that are clearly defined and measured in environmental compartments, food and food-related items, and human bodies;
• Interlinks between contaminant exposure and biological, ecological, and human health effects, including those of climate change;
• Contaminants of emerging concerns (including but not limited to antibiotic resistant microorganisms or genes, microplastics/nanoplastics, electronic wastes, light, and noise) and/or their biological, ecological, or human health effects;
• Laboratory and field studies on the remediation/mitigation of environmental pollution via new techniques and with clear links to biological, ecological, or human health effects;
• Modeling of pollution processes, patterns, or trends that is of clear environmental and/or human health interest;
• New techniques that measure and examine environmental occurrences, transport, behavior, and effects of pollutants within the environment or the laboratory, provided that they can be clearly used to address problems within regional or global environmental compartments.