一个网络通信工具箱,用于定量评估新的神经影像学结果

IF 15.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Ru Kong, R. Nathan Spreng, Aihuiping Xue, Richard F. Betzel, Jessica R. Cohen, Jessica S. Damoiseaux, Felipe De Brigard, Simon B. Eickhoff, Alex Fornito, Caterina Gratton, Evan M. Gordon, Avram J. Holmes, Angela R. Laird, Linda Larson-Prior, Lisa D. Nickerson, Ana Luísa Pinho, Adeel Razi, Sepideh Sadaghiani, James M. Shine, Anastasia Yendiki, B. T. Thomas Yeo, Lucina Q. Uddin
{"title":"一个网络通信工具箱,用于定量评估新的神经影像学结果","authors":"Ru Kong, R. Nathan Spreng, Aihuiping Xue, Richard F. Betzel, Jessica R. Cohen, Jessica S. Damoiseaux, Felipe De Brigard, Simon B. Eickhoff, Alex Fornito, Caterina Gratton, Evan M. Gordon, Avram J. Holmes, Angela R. Laird, Linda Larson-Prior, Lisa D. Nickerson, Ana Luísa Pinho, Adeel Razi, Sepideh Sadaghiani, James M. Shine, Anastasia Yendiki, B. T. Thomas Yeo, Lucina Q. Uddin","doi":"10.1038/s41467-025-58176-9","DOIUrl":null,"url":null,"abstract":"<p>The brain can be decomposed into large-scale functional networks, but the specific spatial topographies of these networks and the names used to describe them vary across studies. Such discordance has hampered interpretation and convergence of research findings across the field. We have developed the <i>Network Correspondence Toolbox</i> (NCT) to permit researchers to examine and report spatial correspondence between their novel neuroimaging results and multiple widely used functional brain atlases. We provide several exemplar demonstrations to illustrate how researchers can use the NCT to report their own findings. The NCT provides a convenient means for computing Dice coefficients with spin test permutations to determine the magnitude and statistical significance of correspondence among user-defined maps and existing atlas labels. The adoption of the NCT will make it easier for network neuroscience researchers to report their findings in a standardized manner, thus aiding reproducibility and facilitating comparisons between studies to produce interdisciplinary insights.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"34 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A network correspondence toolbox for quantitative evaluation of novel neuroimaging results\",\"authors\":\"Ru Kong, R. Nathan Spreng, Aihuiping Xue, Richard F. Betzel, Jessica R. Cohen, Jessica S. Damoiseaux, Felipe De Brigard, Simon B. Eickhoff, Alex Fornito, Caterina Gratton, Evan M. Gordon, Avram J. Holmes, Angela R. Laird, Linda Larson-Prior, Lisa D. Nickerson, Ana Luísa Pinho, Adeel Razi, Sepideh Sadaghiani, James M. Shine, Anastasia Yendiki, B. T. Thomas Yeo, Lucina Q. Uddin\",\"doi\":\"10.1038/s41467-025-58176-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The brain can be decomposed into large-scale functional networks, but the specific spatial topographies of these networks and the names used to describe them vary across studies. Such discordance has hampered interpretation and convergence of research findings across the field. We have developed the <i>Network Correspondence Toolbox</i> (NCT) to permit researchers to examine and report spatial correspondence between their novel neuroimaging results and multiple widely used functional brain atlases. We provide several exemplar demonstrations to illustrate how researchers can use the NCT to report their own findings. The NCT provides a convenient means for computing Dice coefficients with spin test permutations to determine the magnitude and statistical significance of correspondence among user-defined maps and existing atlas labels. The adoption of the NCT will make it easier for network neuroscience researchers to report their findings in a standardized manner, thus aiding reproducibility and facilitating comparisons between studies to produce interdisciplinary insights.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"34 1\",\"pages\":\"\"},\"PeriodicalIF\":15.7000,\"publicationDate\":\"2025-03-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-025-58176-9\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-58176-9","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

大脑可以被分解成大规模的功能网络,但这些网络的具体空间地形和用于描述它们的名称在不同的研究中有所不同。这种不一致阻碍了整个领域研究成果的解释和融合。我们开发了网络对应工具箱(NCT),允许研究人员检查和报告他们的新神经成像结果与多个广泛使用的功能脑地图集之间的空间对应关系。我们提供了几个范例演示来说明研究人员如何使用NCT来报告他们自己的发现。NCT提供了一种方便的方法,通过自旋测试排列来计算Dice系数,以确定用户定义的地图和现有地图集标签之间对应的大小和统计显著性。采用NCT将使网络神经科学研究人员更容易以标准化的方式报告他们的发现,从而有助于可重复性和促进研究之间的比较,从而产生跨学科的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A network correspondence toolbox for quantitative evaluation of novel neuroimaging results

A network correspondence toolbox for quantitative evaluation of novel neuroimaging results

The brain can be decomposed into large-scale functional networks, but the specific spatial topographies of these networks and the names used to describe them vary across studies. Such discordance has hampered interpretation and convergence of research findings across the field. We have developed the Network Correspondence Toolbox (NCT) to permit researchers to examine and report spatial correspondence between their novel neuroimaging results and multiple widely used functional brain atlases. We provide several exemplar demonstrations to illustrate how researchers can use the NCT to report their own findings. The NCT provides a convenient means for computing Dice coefficients with spin test permutations to determine the magnitude and statistical significance of correspondence among user-defined maps and existing atlas labels. The adoption of the NCT will make it easier for network neuroscience researchers to report their findings in a standardized manner, thus aiding reproducibility and facilitating comparisons between studies to produce interdisciplinary insights.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信