基于二氧化钒的超宽带吸收及倍频线圆极化转换可调谐元结构的理论研究

IF 5.1 3区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Nanoscale Pub Date : 2025-03-26 DOI:10.1039/D5NR00490J
Shuo Dai, Si-Yuan Liao, Jun-Rui Pan and Hai-Feng Zhang
{"title":"基于二氧化钒的超宽带吸收及倍频线圆极化转换可调谐元结构的理论研究","authors":"Shuo Dai, Si-Yuan Liao, Jun-Rui Pan and Hai-Feng Zhang","doi":"10.1039/D5NR00490J","DOIUrl":null,"url":null,"abstract":"<p >An ultra-wideband absorption and tripling octave frequency linear-to-circular polarization conversion tunable metastructure (MS) is proposed, utilizing the phase transition property of vanadium dioxide (VO<small><sub>2</sub></small>). In its metallic state, the MS is demonstrated to function as a polarization-insensitive ultra-wideband MS absorber, achieving an absorption value exceeding 90% within a frequency range of 2.37 THz to 4.56 THz. The absorption mechanism is elucidated through an equivalent circuit model, impedance matching theory, and electric field distribution analysis. In the insulating state of VO<small><sub>2</sub></small>, the MS is shown to operate as a converter tripling the octave frequency in linear-to-circular polarization, with an axial ratio below 3 dB across the frequency ranges of 0.95–1.68 THz and 2.25–4.49 THz, corresponding to relative bandwidths of 55.51% and 66.27%. Remarkably, the polarization conversion in the insulating state exhibits tripling octave frequency characteristics, with a fundamental bandwidth spanning 0.95–1.49 THz and a tripling octave frequency bandwidth spanning 2.85–4.48 THz. The MS can switch between distinct functionalities within the terahertz regime, offering significant potential for applications such as spectral analysis, signal encryption, stealth material preparation, and other advanced terahertz technologies.</p>","PeriodicalId":92,"journal":{"name":"Nanoscale","volume":" 20","pages":" 12673-12683"},"PeriodicalIF":5.1000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Theoretical investigation of a tunable vanadium dioxide-based metastructure for ultra-wideband absorption and linear-to-circular polarization conversion across triple-octave frequencies†\",\"authors\":\"Shuo Dai, Si-Yuan Liao, Jun-Rui Pan and Hai-Feng Zhang\",\"doi\":\"10.1039/D5NR00490J\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >An ultra-wideband absorption and tripling octave frequency linear-to-circular polarization conversion tunable metastructure (MS) is proposed, utilizing the phase transition property of vanadium dioxide (VO<small><sub>2</sub></small>). In its metallic state, the MS is demonstrated to function as a polarization-insensitive ultra-wideband MS absorber, achieving an absorption value exceeding 90% within a frequency range of 2.37 THz to 4.56 THz. The absorption mechanism is elucidated through an equivalent circuit model, impedance matching theory, and electric field distribution analysis. In the insulating state of VO<small><sub>2</sub></small>, the MS is shown to operate as a converter tripling the octave frequency in linear-to-circular polarization, with an axial ratio below 3 dB across the frequency ranges of 0.95–1.68 THz and 2.25–4.49 THz, corresponding to relative bandwidths of 55.51% and 66.27%. Remarkably, the polarization conversion in the insulating state exhibits tripling octave frequency characteristics, with a fundamental bandwidth spanning 0.95–1.49 THz and a tripling octave frequency bandwidth spanning 2.85–4.48 THz. The MS can switch between distinct functionalities within the terahertz regime, offering significant potential for applications such as spectral analysis, signal encryption, stealth material preparation, and other advanced terahertz technologies.</p>\",\"PeriodicalId\":92,\"journal\":{\"name\":\"Nanoscale\",\"volume\":\" 20\",\"pages\":\" 12673-12683\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2025-03-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanoscale\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/nr/d5nr00490j\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/nr/d5nr00490j","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

利用二氧化钒(VO2)的相变特性,提出了一种超宽带吸收和三倍倍频程线性到圆极化转换的可调谐金属结构(MS)。在金属状态下,MS 被证明是一种对偏振不敏感的超宽带 MS 吸收器,在 2.37 太赫兹至 4.56 太赫兹的频率范围内吸收率超过 90%。通过等效电路模型、阻抗匹配理论和电场分布分析,阐明了吸收机制。在 VO2 的绝缘状态下,MS 可作为三倍倍频程线性到圆极化 MS 转换器工作,在 0.95-1.68 THz 和 2.25-4.49 THz 频率范围内的轴向比低于 3 dB,对应的相对带宽分别为 55.51% 和 66.27%。值得注意的是,绝缘状态下的极化转换表现出三倍倍频程频率特性,基频带宽跨度为 0.95-1.49 太赫兹,三倍倍频程频率带宽跨度为 2.85-4.48 太赫兹。MS 可以在太赫兹范围内的不同功能之间切换,为光谱分析、信号加密、隐形材料制备和其他先进的太赫兹技术等应用提供了巨大的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Theoretical investigation of a tunable vanadium dioxide-based metastructure for ultra-wideband absorption and linear-to-circular polarization conversion across triple-octave frequencies†

Theoretical investigation of a tunable vanadium dioxide-based metastructure for ultra-wideband absorption and linear-to-circular polarization conversion across triple-octave frequencies†

An ultra-wideband absorption and tripling octave frequency linear-to-circular polarization conversion tunable metastructure (MS) is proposed, utilizing the phase transition property of vanadium dioxide (VO2). In its metallic state, the MS is demonstrated to function as a polarization-insensitive ultra-wideband MS absorber, achieving an absorption value exceeding 90% within a frequency range of 2.37 THz to 4.56 THz. The absorption mechanism is elucidated through an equivalent circuit model, impedance matching theory, and electric field distribution analysis. In the insulating state of VO2, the MS is shown to operate as a converter tripling the octave frequency in linear-to-circular polarization, with an axial ratio below 3 dB across the frequency ranges of 0.95–1.68 THz and 2.25–4.49 THz, corresponding to relative bandwidths of 55.51% and 66.27%. Remarkably, the polarization conversion in the insulating state exhibits tripling octave frequency characteristics, with a fundamental bandwidth spanning 0.95–1.49 THz and a tripling octave frequency bandwidth spanning 2.85–4.48 THz. The MS can switch between distinct functionalities within the terahertz regime, offering significant potential for applications such as spectral analysis, signal encryption, stealth material preparation, and other advanced terahertz technologies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nanoscale
Nanoscale CHEMISTRY, MULTIDISCIPLINARY-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
12.10
自引率
3.00%
发文量
1628
审稿时长
1.6 months
期刊介绍: Nanoscale is a high-impact international journal, publishing high-quality research across nanoscience and nanotechnology. Nanoscale publishes a full mix of research articles on experimental and theoretical work, including reviews, communications, and full papers.Highly interdisciplinary, this journal appeals to scientists, researchers and professionals interested in nanoscience and nanotechnology, quantum materials and quantum technology, including the areas of physics, chemistry, biology, medicine, materials, energy/environment, information technology, detection science, healthcare and drug discovery, and electronics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信