无人机中继和边缘计算:混合网络优化

IF 7.1 2区 计算机科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Bo Ma;Jiawei Ye;Shaohan Feng;Chuanhuang Li;Dusit Niyato;Dong In Kim
{"title":"无人机中继和边缘计算:混合网络优化","authors":"Bo Ma;Jiawei Ye;Shaohan Feng;Chuanhuang Li;Dusit Niyato;Dong In Kim","doi":"10.1109/TVT.2025.3549366","DOIUrl":null,"url":null,"abstract":"This paper exploits an Unmanned Aerial Vehicle assisted Mobile Edge Computing (UAV-MEC) system to meet the computation demand of User Equipments (UEs). However, in conventional UAV-MEC architecture, a UAV is dedicated only to one single service, which will inevitably limit overall system performance. To address the above issue of the conventional UAV-MEC architecture, we propose a hybrid UAV-MEC model. In this model, a UAV is treated as an agent to provide either relay or computing services. Moreover, we propose an MEC Multiple Agent UAV Trajectory and User Association Policy Gradient (MEC-MAUTUA-PG) algorithm to optimize offloading strategies of the UEs as well as the trajectory design of UAV. We show the superiority of the proposed algorithm in terms of delay and the safety of trajectory design of UAV in the environment.","PeriodicalId":13421,"journal":{"name":"IEEE Transactions on Vehicular Technology","volume":"74 7","pages":"11644-11649"},"PeriodicalIF":7.1000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"UAV-Enabled Relaying and Edge Computing: Hybrid Network Optimization\",\"authors\":\"Bo Ma;Jiawei Ye;Shaohan Feng;Chuanhuang Li;Dusit Niyato;Dong In Kim\",\"doi\":\"10.1109/TVT.2025.3549366\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper exploits an Unmanned Aerial Vehicle assisted Mobile Edge Computing (UAV-MEC) system to meet the computation demand of User Equipments (UEs). However, in conventional UAV-MEC architecture, a UAV is dedicated only to one single service, which will inevitably limit overall system performance. To address the above issue of the conventional UAV-MEC architecture, we propose a hybrid UAV-MEC model. In this model, a UAV is treated as an agent to provide either relay or computing services. Moreover, we propose an MEC Multiple Agent UAV Trajectory and User Association Policy Gradient (MEC-MAUTUA-PG) algorithm to optimize offloading strategies of the UEs as well as the trajectory design of UAV. We show the superiority of the proposed algorithm in terms of delay and the safety of trajectory design of UAV in the environment.\",\"PeriodicalId\":13421,\"journal\":{\"name\":\"IEEE Transactions on Vehicular Technology\",\"volume\":\"74 7\",\"pages\":\"11644-11649\"},\"PeriodicalIF\":7.1000,\"publicationDate\":\"2025-03-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Vehicular Technology\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10938344/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Vehicular Technology","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10938344/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

为了满足用户设备的计算需求,本文开发了一种无人机辅助移动边缘计算系统。然而,在传统的无人机- mec体系结构中,一架无人机仅专用于一项单一服务,这将不可避免地限制整个系统的性能。为了解决传统无人机- mec架构的上述问题,我们提出了一种混合无人机- mec模型。在该模型中,无人机被视为提供中继或计算服务的代理。此外,我们提出了一种MEC多智能体无人机轨迹和用户关联策略梯度(MEC- mautua - pg)算法来优化ue的卸载策略以及无人机的轨迹设计。结果表明,该算法在时延和无人机轨迹设计的安全性方面具有优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
UAV-Enabled Relaying and Edge Computing: Hybrid Network Optimization
This paper exploits an Unmanned Aerial Vehicle assisted Mobile Edge Computing (UAV-MEC) system to meet the computation demand of User Equipments (UEs). However, in conventional UAV-MEC architecture, a UAV is dedicated only to one single service, which will inevitably limit overall system performance. To address the above issue of the conventional UAV-MEC architecture, we propose a hybrid UAV-MEC model. In this model, a UAV is treated as an agent to provide either relay or computing services. Moreover, we propose an MEC Multiple Agent UAV Trajectory and User Association Policy Gradient (MEC-MAUTUA-PG) algorithm to optimize offloading strategies of the UEs as well as the trajectory design of UAV. We show the superiority of the proposed algorithm in terms of delay and the safety of trajectory design of UAV in the environment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.00
自引率
8.80%
发文量
1245
审稿时长
6.3 months
期刊介绍: The scope of the Transactions is threefold (which was approved by the IEEE Periodicals Committee in 1967) and is published on the journal website as follows: Communications: The use of mobile radio on land, sea, and air, including cellular radio, two-way radio, and one-way radio, with applications to dispatch and control vehicles, mobile radiotelephone, radio paging, and status monitoring and reporting. Related areas include spectrum usage, component radio equipment such as cavities and antennas, compute control for radio systems, digital modulation and transmission techniques, mobile radio circuit design, radio propagation for vehicular communications, effects of ignition noise and radio frequency interference, and consideration of the vehicle as part of the radio operating environment. Transportation Systems: The use of electronic technology for the control of ground transportation systems including, but not limited to, traffic aid systems; traffic control systems; automatic vehicle identification, location, and monitoring systems; automated transport systems, with single and multiple vehicle control; and moving walkways or people-movers. Vehicular Electronics: The use of electronic or electrical components and systems for control, propulsion, or auxiliary functions, including but not limited to, electronic controls for engineer, drive train, convenience, safety, and other vehicle systems; sensors, actuators, and microprocessors for onboard use; electronic fuel control systems; vehicle electrical components and systems collision avoidance systems; electromagnetic compatibility in the vehicle environment; and electric vehicles and controls.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信