基于脑电图的多会话脑机接口非平稳性的监督自编码器去噪。

Avin Ofer, Almagor Ophir, Noah Yoav, Rosipal Roman, Shriki Oren
{"title":"基于脑电图的多会话脑机接口非平稳性的监督自编码器去噪。","authors":"Avin Ofer, Almagor Ophir, Noah Yoav, Rosipal Roman, Shriki Oren","doi":"10.1088/1741-2552/adc48e","DOIUrl":null,"url":null,"abstract":"<p><p><i>Objective.</i>Non-stationarity in electroencephalogram (EEG) signals poses significant challenges for the performance and implementation of brain-computer interfaces (BCIs).<i>Approach.</i>In this study, we propose a novel method for cross-session BCI tasks that employs a supervised autoencoder to reduce session-specific information while preserving task-related signals. Our approach compresses high-dimensional EEG inputs and reconstructs them, thereby mitigating non-stationary variability in the data. In addition to unsupervised minimization of the reconstruction error, the objective function of the network includes two supervised terms to ensure that the latent representations exclude session identity information and are optimized for subsequent classification.<i>Main results.</i>Evaluation across three different motor imagery datasets demonstrates that our approach effectively addresses domain adaptation challenges, outperforming both naïve cross-session and within-session methods.<i>Significance.</i>Our method eliminates the need for data from new sessions, making it fully unsupervised concerning new session data and reducing the necessity for recalibration with each session. Furthermore, the reduction of session-specific information in the reconstructed signals indicates that our approach effectively denoises non-stationary signals, thereby enhancing the accuracy of BCI models. Future applications could extend this model to a broader range of BCI tasks and explore the residual signals to investigate sources of non-stationary brain components and other cognitive processes.</p>","PeriodicalId":94096,"journal":{"name":"Journal of neural engineering","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Supervised autoencoder denoiser for non-stationarity in multi-session EEG-based BCI.\",\"authors\":\"Avin Ofer, Almagor Ophir, Noah Yoav, Rosipal Roman, Shriki Oren\",\"doi\":\"10.1088/1741-2552/adc48e\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><i>Objective.</i>Non-stationarity in electroencephalogram (EEG) signals poses significant challenges for the performance and implementation of brain-computer interfaces (BCIs).<i>Approach.</i>In this study, we propose a novel method for cross-session BCI tasks that employs a supervised autoencoder to reduce session-specific information while preserving task-related signals. Our approach compresses high-dimensional EEG inputs and reconstructs them, thereby mitigating non-stationary variability in the data. In addition to unsupervised minimization of the reconstruction error, the objective function of the network includes two supervised terms to ensure that the latent representations exclude session identity information and are optimized for subsequent classification.<i>Main results.</i>Evaluation across three different motor imagery datasets demonstrates that our approach effectively addresses domain adaptation challenges, outperforming both naïve cross-session and within-session methods.<i>Significance.</i>Our method eliminates the need for data from new sessions, making it fully unsupervised concerning new session data and reducing the necessity for recalibration with each session. Furthermore, the reduction of session-specific information in the reconstructed signals indicates that our approach effectively denoises non-stationary signals, thereby enhancing the accuracy of BCI models. Future applications could extend this model to a broader range of BCI tasks and explore the residual signals to investigate sources of non-stationary brain components and other cognitive processes.</p>\",\"PeriodicalId\":94096,\"journal\":{\"name\":\"Journal of neural engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of neural engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/1741-2552/adc48e\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of neural engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1741-2552/adc48e","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

脑电信号的非平稳性给脑机接口(bci)的性能和实现带来了重大挑战。在本研究中,我们提出了一种跨会话BCI任务的新方法,该方法采用监督式自编码器来减少会话特定信息,同时保留任务相关信号。我们的方法压缩高维脑电图输入并重建它们,从而减轻数据中的非平稳变异性。除了重建误差的无监督最小化之外,网络的目标函数还包括两个监督项,以确保潜在表示排除会话身份信息并为后续分类进行优化。对三种不同运动图像数据集的评估表明,我们的方法有效地解决了领域适应挑战,优于naïve跨会话和会话内方法。我们的方法消除了对新会话数据的需求,使新会话数据完全无监督,减少了每个会话重新校准的必要性。此外,重构信号中会话特定信息的减少表明我们的方法有效地去噪了非平稳信号,从而提高了BCI模型的准确性。未来的应用可以将该模型扩展到更广泛的脑机接口任务,并探索剩余信号,以研究非平稳大脑成分和其他认知过程的来源。 。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Supervised autoencoder denoiser for non-stationarity in multi-session EEG-based BCI.

Objective.Non-stationarity in electroencephalogram (EEG) signals poses significant challenges for the performance and implementation of brain-computer interfaces (BCIs).Approach.In this study, we propose a novel method for cross-session BCI tasks that employs a supervised autoencoder to reduce session-specific information while preserving task-related signals. Our approach compresses high-dimensional EEG inputs and reconstructs them, thereby mitigating non-stationary variability in the data. In addition to unsupervised minimization of the reconstruction error, the objective function of the network includes two supervised terms to ensure that the latent representations exclude session identity information and are optimized for subsequent classification.Main results.Evaluation across three different motor imagery datasets demonstrates that our approach effectively addresses domain adaptation challenges, outperforming both naïve cross-session and within-session methods.Significance.Our method eliminates the need for data from new sessions, making it fully unsupervised concerning new session data and reducing the necessity for recalibration with each session. Furthermore, the reduction of session-specific information in the reconstructed signals indicates that our approach effectively denoises non-stationary signals, thereby enhancing the accuracy of BCI models. Future applications could extend this model to a broader range of BCI tasks and explore the residual signals to investigate sources of non-stationary brain components and other cognitive processes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信