Arunashish Datta, David Yang, Shovan Maity, Shreyas Sen
{"title":"触屏通信(ToSCom):触摸感应过程中的电-准静态身体通信。","authors":"Arunashish Datta, David Yang, Shovan Maity, Shreyas Sen","doi":"10.1038/s44172-025-00380-y","DOIUrl":null,"url":null,"abstract":"<p><p>Touchscreens are a fundamental technology for human society providing the primary gateway for human-machine interaction. Today's touchscreens can only be used to detect touch and provide the location of the user's touch input but not to simultaneously communicate digital data during a touch event through the touchscreen. If communication through a touchscreen can be enabled, it promises deep societal impact by augmenting the most popular Human-Computer-Interaction interface with new possibilities such as a single application on the same device opening up personalized user-specific account data depending on the person interacting with the application. Leveraging advances in Electro-Quasistatic field based communication in the past decade, we propose and demonstrate Touchscreen Communication (ToSCom), a high-speed (>Mbps) simultaneous communication and touch sensing interface. We develop a low path loss channel across the entire touchscreen surface enabling 3 Mbps data rate communication with an average bit-error-rate of less than 5 × 10<sup>-7</sup> through the touchscreen surface simultaneously during touch sensing. ToSCom enables a wide range of possibilities in day-to-day life like in wearable devices like transactions in a Point-of-Sale system, audio/image file transfer, and viewing personalized data in touchscreen kiosks.</p>","PeriodicalId":72644,"journal":{"name":"Communications engineering","volume":"4 1","pages":"56"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11933402/pdf/","citationCount":"0","resultStr":"{\"title\":\"Touchscreen communication (ToSCom): Electro-Quasistatic body communication during touch sensing.\",\"authors\":\"Arunashish Datta, David Yang, Shovan Maity, Shreyas Sen\",\"doi\":\"10.1038/s44172-025-00380-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Touchscreens are a fundamental technology for human society providing the primary gateway for human-machine interaction. Today's touchscreens can only be used to detect touch and provide the location of the user's touch input but not to simultaneously communicate digital data during a touch event through the touchscreen. If communication through a touchscreen can be enabled, it promises deep societal impact by augmenting the most popular Human-Computer-Interaction interface with new possibilities such as a single application on the same device opening up personalized user-specific account data depending on the person interacting with the application. Leveraging advances in Electro-Quasistatic field based communication in the past decade, we propose and demonstrate Touchscreen Communication (ToSCom), a high-speed (>Mbps) simultaneous communication and touch sensing interface. We develop a low path loss channel across the entire touchscreen surface enabling 3 Mbps data rate communication with an average bit-error-rate of less than 5 × 10<sup>-7</sup> through the touchscreen surface simultaneously during touch sensing. ToSCom enables a wide range of possibilities in day-to-day life like in wearable devices like transactions in a Point-of-Sale system, audio/image file transfer, and viewing personalized data in touchscreen kiosks.</p>\",\"PeriodicalId\":72644,\"journal\":{\"name\":\"Communications engineering\",\"volume\":\"4 1\",\"pages\":\"56\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-03-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11933402/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1038/s44172-025-00380-y\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s44172-025-00380-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Touchscreen communication (ToSCom): Electro-Quasistatic body communication during touch sensing.
Touchscreens are a fundamental technology for human society providing the primary gateway for human-machine interaction. Today's touchscreens can only be used to detect touch and provide the location of the user's touch input but not to simultaneously communicate digital data during a touch event through the touchscreen. If communication through a touchscreen can be enabled, it promises deep societal impact by augmenting the most popular Human-Computer-Interaction interface with new possibilities such as a single application on the same device opening up personalized user-specific account data depending on the person interacting with the application. Leveraging advances in Electro-Quasistatic field based communication in the past decade, we propose and demonstrate Touchscreen Communication (ToSCom), a high-speed (>Mbps) simultaneous communication and touch sensing interface. We develop a low path loss channel across the entire touchscreen surface enabling 3 Mbps data rate communication with an average bit-error-rate of less than 5 × 10-7 through the touchscreen surface simultaneously during touch sensing. ToSCom enables a wide range of possibilities in day-to-day life like in wearable devices like transactions in a Point-of-Sale system, audio/image file transfer, and viewing personalized data in touchscreen kiosks.