多层次潜在类分析:最先进的方法及其在R包中的实现。

IF 3.5 3区 心理学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Multivariate Behavioral Research Pub Date : 2025-07-01 Epub Date: 2025-03-25 DOI:10.1080/00273171.2025.2473935
Johan Lyrvall, Roberto Di Mari, Zsuzsa Bakk, Jennifer Oser, Jouni Kuha
{"title":"多层次潜在类分析:最先进的方法及其在R包中的实现。","authors":"Johan Lyrvall, Roberto Di Mari, Zsuzsa Bakk, Jennifer Oser, Jouni Kuha","doi":"10.1080/00273171.2025.2473935","DOIUrl":null,"url":null,"abstract":"<p><p>Latent class (LC) analysis is a model-based clustering approach for categorical data, with a wide range of applications in the social sciences and beyond. When the data have a hierarchical structure, the multilevel LC model can be used to account for higher-level dependencies between the units by means of a further categorical LC variable at the group level. The research interest of LC analysis typically lies in the relationship between the LCs and external covariates, or predictors. To estimate LC models with covariates, researchers can use the one-step approach, or the generally recommended stepwise estimators, which separate the estimation of the clustering model from the subsequent estimation of the regression model. The package multilevLCA has the most comprehensive set of model specifications and estimation approaches for this family of models in the open-source domain, estimating single- and multilevel LC models, with and without covariates, using the one-step and stepwise approaches.</p>","PeriodicalId":53155,"journal":{"name":"Multivariate Behavioral Research","volume":" ","pages":"731-747"},"PeriodicalIF":3.5000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multilevel Latent Class Analysis: State-of-the-Art Methodologies and Their Implementation in the R Package multilevLCA.\",\"authors\":\"Johan Lyrvall, Roberto Di Mari, Zsuzsa Bakk, Jennifer Oser, Jouni Kuha\",\"doi\":\"10.1080/00273171.2025.2473935\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Latent class (LC) analysis is a model-based clustering approach for categorical data, with a wide range of applications in the social sciences and beyond. When the data have a hierarchical structure, the multilevel LC model can be used to account for higher-level dependencies between the units by means of a further categorical LC variable at the group level. The research interest of LC analysis typically lies in the relationship between the LCs and external covariates, or predictors. To estimate LC models with covariates, researchers can use the one-step approach, or the generally recommended stepwise estimators, which separate the estimation of the clustering model from the subsequent estimation of the regression model. The package multilevLCA has the most comprehensive set of model specifications and estimation approaches for this family of models in the open-source domain, estimating single- and multilevel LC models, with and without covariates, using the one-step and stepwise approaches.</p>\",\"PeriodicalId\":53155,\"journal\":{\"name\":\"Multivariate Behavioral Research\",\"volume\":\" \",\"pages\":\"731-747\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Multivariate Behavioral Research\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.1080/00273171.2025.2473935\",\"RegionNum\":3,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/3/25 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Multivariate Behavioral Research","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1080/00273171.2025.2473935","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/25 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

潜类(LC)分析是一种基于模型的分类数据聚类方法,在社会科学及其他领域有着广泛的应用。当数据具有分层结构时,多层次 LC 模型可以通过在群体层面上的另一个分类 LC 变量来解释单元之间更高层次的依赖关系。LC 分析的研究兴趣通常在于 LC 与外部协变量或预测因子之间的关系。要估计带有协变量的 LC 模型,研究人员可以使用一步法或一般推荐的逐步估计法,这种方法将聚类模型的估计与随后的回归模型估计分开。在开源领域,multilevLCA 软件包拥有该系列模型最全面的模型规格和估计方法,可以使用一步法和逐步法估计单层和多层 LC 模型,包括有协方差和无协方差的模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multilevel Latent Class Analysis: State-of-the-Art Methodologies and Their Implementation in the R Package multilevLCA.

Latent class (LC) analysis is a model-based clustering approach for categorical data, with a wide range of applications in the social sciences and beyond. When the data have a hierarchical structure, the multilevel LC model can be used to account for higher-level dependencies between the units by means of a further categorical LC variable at the group level. The research interest of LC analysis typically lies in the relationship between the LCs and external covariates, or predictors. To estimate LC models with covariates, researchers can use the one-step approach, or the generally recommended stepwise estimators, which separate the estimation of the clustering model from the subsequent estimation of the regression model. The package multilevLCA has the most comprehensive set of model specifications and estimation approaches for this family of models in the open-source domain, estimating single- and multilevel LC models, with and without covariates, using the one-step and stepwise approaches.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Multivariate Behavioral Research
Multivariate Behavioral Research 数学-数学跨学科应用
CiteScore
7.60
自引率
2.60%
发文量
49
审稿时长
>12 weeks
期刊介绍: Multivariate Behavioral Research (MBR) publishes a variety of substantive, methodological, and theoretical articles in all areas of the social and behavioral sciences. Most MBR articles fall into one of two categories. Substantive articles report on applications of sophisticated multivariate research methods to study topics of substantive interest in personality, health, intelligence, industrial/organizational, and other behavioral science areas. Methodological articles present and/or evaluate new developments in multivariate methods, or address methodological issues in current research. We also encourage submission of integrative articles related to pedagogy involving multivariate research methods, and to historical treatments of interest and relevance to multivariate research methods.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信