IF 3.8 3区 医学 Q2 CELL & TISSUE ENGINEERING
Stem Cells International Pub Date : 2025-03-17 eCollection Date: 2025-01-01 DOI:10.1155/sci/8883585
Zhao Zhirong, Jiang Kexin, Yuan Mu, Zhou Lichen, Tan Zhen, Liang Hongyin, Dai Ruiwu
{"title":"Suppression of TP Rat Pancreatic Acinar Cell Apoptosis by hucMSC-Ex Carrying hsa-miR-21-5p via PTEN/PI3K Regulation.","authors":"Zhao Zhirong, Jiang Kexin, Yuan Mu, Zhou Lichen, Tan Zhen, Liang Hongyin, Dai Ruiwu","doi":"10.1155/sci/8883585","DOIUrl":null,"url":null,"abstract":"<p><p><b>Objective:</b> The traumatic pancreatitis (TP) has an alarmingly high mortality rate. Our previous research has demonstrated that human umbilical cord mesenchymal stem cells-derived exosomes (hucMSC-Exs) could treat TP by inhibiting acinar cell apoptosis. Accordingly, the objective of this study is to unravel the intricate mechanism behind the repair of pancreatic injury in TP rats. <b>Methods:</b> A gene interaction network of miRNA was constructed based on the Gene Expression Omnibus (GEO) database (GSE 159814). Our investigation was divided into two groups, and appropriate controls were implemented for each group. The expression levels of inflammatory factors in each group were detected, along with the pathological damage of pancreatic tissue, the percentage of apoptotic cells, and key mRNA and protein expression levels. <b>Results:</b> The miRNA-mRNA gene interaction network suggests that hsa-miR-21-5p/phosphatase and tensin homolog (PTEN) are positioned at the core of this interaction network. Enzyme-linked immunosorbent assay (ELISA) and histological examination (HE) results suggest that pancreatic damage increased in the miR-21 inhibitor and EXW groups, whereas it decreased in the miR-21 activator and EXC groups compared to the EX group. PCR, western blot (WB), and TdT-mediated dUTP Nick-End Labeling (TUNEL) results indicate that hucMSC-Ex carrying hsa-miR-21-5p suppresses excessive activation of PTEN by phosphoinositide 3-kinase (PI3K), exerting therapeutic effects. <b>Conclusion:</b> This study has discovered that hucMSC-Ex effectively inhibits the translation of PTEN via the transported hsa-miR-21-5p, consequently affecting the PI3K/serine-threonine kinase (AKT) signaling pathway. This results in reduced inflammation and inhibition of acinar cell apoptosis by regulating pancreatic enzyme leakage, thereby providing a therapeutic effect on TP.</p>","PeriodicalId":21962,"journal":{"name":"Stem Cells International","volume":"2025 ","pages":"8883585"},"PeriodicalIF":3.8000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11932749/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stem Cells International","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1155/sci/8883585","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

目的:创伤性胰腺炎(TP)的死亡率高得惊人。我们之前的研究表明,人脐带间充质干细胞衍生的外泌体(hucMSC-Exs)可通过抑制胰腺细胞凋亡来治疗创伤性胰腺炎。因此,本研究旨在揭示 TP 大鼠胰腺损伤修复背后的复杂机制。研究方法基于基因表达总库(Gene Expression Omnibus,GEO)数据库(GSE 159814)构建了 miRNA 的基因相互作用网络。我们的研究分为两组,每组都进行了适当的对照。检测各组炎症因子的表达水平、胰腺组织的病理损伤、凋亡细胞的比例以及关键 mRNA 和蛋白的表达水平。结果显示miRNA-mRNA基因相互作用网络表明,hsa-miR-21-5p/磷酸酶和天丝蛋白同源物(PTEN)位于该相互作用网络的核心。酶联免疫吸附试验(ELISA)和组织学检查(HE)结果表明,与EX组相比,miR-21抑制剂组和EXW组的胰腺损伤加重,而miR-21激活剂组和EXC组的胰腺损伤减轻。PCR、Western blot(WB)和 TdT-mediated dUTP Nick-End Labeling(TUNEL)结果表明,携带 hsa-miR-21-5p 的 hucMSC-Ex 能抑制磷酸肌酸 3- 激酶(PI3K)对 PTEN 的过度激活,从而发挥治疗作用。结论本研究发现,hucMSC-Ex 可通过转运的 hsa-miR-21-5p 有效抑制 PTEN 的翻译,从而影响 PI3K/丝氨酸苏氨酸激酶(AKT)信号通路。这导致炎症减轻,并通过调节胰酶渗漏抑制了尖锐湿疣细胞的凋亡,从而对 TP 起到治疗作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Suppression of TP Rat Pancreatic Acinar Cell Apoptosis by hucMSC-Ex Carrying hsa-miR-21-5p via PTEN/PI3K Regulation.

Objective: The traumatic pancreatitis (TP) has an alarmingly high mortality rate. Our previous research has demonstrated that human umbilical cord mesenchymal stem cells-derived exosomes (hucMSC-Exs) could treat TP by inhibiting acinar cell apoptosis. Accordingly, the objective of this study is to unravel the intricate mechanism behind the repair of pancreatic injury in TP rats. Methods: A gene interaction network of miRNA was constructed based on the Gene Expression Omnibus (GEO) database (GSE 159814). Our investigation was divided into two groups, and appropriate controls were implemented for each group. The expression levels of inflammatory factors in each group were detected, along with the pathological damage of pancreatic tissue, the percentage of apoptotic cells, and key mRNA and protein expression levels. Results: The miRNA-mRNA gene interaction network suggests that hsa-miR-21-5p/phosphatase and tensin homolog (PTEN) are positioned at the core of this interaction network. Enzyme-linked immunosorbent assay (ELISA) and histological examination (HE) results suggest that pancreatic damage increased in the miR-21 inhibitor and EXW groups, whereas it decreased in the miR-21 activator and EXC groups compared to the EX group. PCR, western blot (WB), and TdT-mediated dUTP Nick-End Labeling (TUNEL) results indicate that hucMSC-Ex carrying hsa-miR-21-5p suppresses excessive activation of PTEN by phosphoinositide 3-kinase (PI3K), exerting therapeutic effects. Conclusion: This study has discovered that hucMSC-Ex effectively inhibits the translation of PTEN via the transported hsa-miR-21-5p, consequently affecting the PI3K/serine-threonine kinase (AKT) signaling pathway. This results in reduced inflammation and inhibition of acinar cell apoptosis by regulating pancreatic enzyme leakage, thereby providing a therapeutic effect on TP.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Stem Cells International
Stem Cells International CELL & TISSUE ENGINEERING-
CiteScore
8.10
自引率
2.30%
发文量
188
审稿时长
18 weeks
期刊介绍: Stem Cells International is a peer-reviewed, Open Access journal that publishes original research articles, review articles, and clinical studies in all areas of stem cell biology and applications. The journal will consider basic, translational, and clinical research, including animal models and clinical trials. Topics covered include, but are not limited to: embryonic stem cells; induced pluripotent stem cells; tissue-specific stem cells; stem cell differentiation; genetics and epigenetics; cancer stem cells; stem cell technologies; ethical, legal, and social issues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信