Weyl半金属中Dzyaloshinskii-Moriya相互作用的磁织构电子控制。

IF 2.3 4区 物理与天体物理 Q3 PHYSICS, CONDENSED MATTER
Yuriy G Semenov, Ki Wook Kim
{"title":"Weyl半金属中Dzyaloshinskii-Moriya相互作用的磁织构电子控制。","authors":"Yuriy G Semenov, Ki Wook Kim","doi":"10.1088/1361-648X/adc4a9","DOIUrl":null,"url":null,"abstract":"<p><p>Purely electrical control of the Dzyaloshinskii-Moriya interaction (DMI) without any external magnetic field is explored in a magnetic Weyl semimetal (WSM). The underlying mechanism for the DMI in the WSM is the recently identified asymmetrical indirect spin-spin interaction compatible with the inversion symmetry of the structure. While the necessary imbalance in the fermion population of opposite chirality is normally achieved with non-orthogonal external electric and magnetic fields (i.e. the axial anomaly), it is found that the intrinsic axial magnetic field characteristic to an inhomogeneous magnetic texture can play the role of the magnetic field. When applied to the magnetic domain walls as specific examples, our theoretical analysis clearly illustrates that the resulting DMI is pinned by and can in turn significantly affect the wall textures. As the appearance and strength of the DMI can be solely controlled by the applied electric field, this mechanism enables electrical modulation of magnetic domains including their excitation in the WSMs. Numerical calculations highlight significant advantages of the WSM over the conventional magnetic materials in spintronic applications such as the racetrack memory.</p>","PeriodicalId":16776,"journal":{"name":"Journal of Physics: Condensed Matter","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Magnetic texture enabled electrical control of Dzyaloshinskii-Moriya interaction in a Weyl semimetal.\",\"authors\":\"Yuriy G Semenov, Ki Wook Kim\",\"doi\":\"10.1088/1361-648X/adc4a9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Purely electrical control of the Dzyaloshinskii-Moriya interaction (DMI) without any external magnetic field is explored in a magnetic Weyl semimetal (WSM). The underlying mechanism for the DMI in the WSM is the recently identified asymmetrical indirect spin-spin interaction compatible with the inversion symmetry of the structure. While the necessary imbalance in the fermion population of opposite chirality is normally achieved with non-orthogonal external electric and magnetic fields (i.e. the axial anomaly), it is found that the intrinsic axial magnetic field characteristic to an inhomogeneous magnetic texture can play the role of the magnetic field. When applied to the magnetic domain walls as specific examples, our theoretical analysis clearly illustrates that the resulting DMI is pinned by and can in turn significantly affect the wall textures. As the appearance and strength of the DMI can be solely controlled by the applied electric field, this mechanism enables electrical modulation of magnetic domains including their excitation in the WSMs. Numerical calculations highlight significant advantages of the WSM over the conventional magnetic materials in spintronic applications such as the racetrack memory.</p>\",\"PeriodicalId\":16776,\"journal\":{\"name\":\"Journal of Physics: Condensed Matter\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physics: Condensed Matter\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-648X/adc4a9\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics: Condensed Matter","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1361-648X/adc4a9","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

摘要

研究了磁性Weyl半金属(WSM)中无外加磁场的Dzyaloshinskii-Moriya相互作用(DMI)的纯电控制。WSM中DMI的潜在机制是最近发现的与结构逆对称相容的非对称间接自旋-自旋相互作用。在非正交的外加电场和磁场条件下,通常会产生手性相反的费米子居群的必要不平衡(即轴向异常),但我们发现,具有非均匀磁织构特征的本征轴向磁场可以起到磁场的作用。当应用于磁畴壁作为具体的例子时,我们的理论分析清楚地表明,由此产生的DMI被钉住,并反过来显著影响壁的纹理。由于DMI的外观和强度可以完全由外加电场控制,因此该机制可以实现磁畴的电调制,包括磁畴在wsm中的激发。数值计算突出了WSM在自旋电子应用(如赛马场存储器)方面比传统磁性材料的显著优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Magnetic texture enabled electrical control of Dzyaloshinskii-Moriya interaction in a Weyl semimetal.

Purely electrical control of the Dzyaloshinskii-Moriya interaction (DMI) without any external magnetic field is explored in a magnetic Weyl semimetal (WSM). The underlying mechanism for the DMI in the WSM is the recently identified asymmetrical indirect spin-spin interaction compatible with the inversion symmetry of the structure. While the necessary imbalance in the fermion population of opposite chirality is normally achieved with non-orthogonal external electric and magnetic fields (i.e. the axial anomaly), it is found that the intrinsic axial magnetic field characteristic to an inhomogeneous magnetic texture can play the role of the magnetic field. When applied to the magnetic domain walls as specific examples, our theoretical analysis clearly illustrates that the resulting DMI is pinned by and can in turn significantly affect the wall textures. As the appearance and strength of the DMI can be solely controlled by the applied electric field, this mechanism enables electrical modulation of magnetic domains including their excitation in the WSMs. Numerical calculations highlight significant advantages of the WSM over the conventional magnetic materials in spintronic applications such as the racetrack memory.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Physics: Condensed Matter
Journal of Physics: Condensed Matter 物理-物理:凝聚态物理
CiteScore
5.30
自引率
7.40%
发文量
1288
审稿时长
2.1 months
期刊介绍: Journal of Physics: Condensed Matter covers the whole of condensed matter physics including soft condensed matter and nanostructures. Papers may report experimental, theoretical and simulation studies. Note that papers must contain fundamental condensed matter science: papers reporting methods of materials preparation or properties of materials without novel condensed matter content will not be accepted.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信