单原子掺杂Zr异质结增强压电催化,通过声动力和物理穿刺协同金属免疫治疗种植体感染。

IF 10.6 1区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Xing Zhou, Jingbo Xie, Xingchen Zhou, Tianyou Ma, Yichen Lu, Yiwen Yang, Zhefei Xie, Houfu Ling, Rui Xu, Mo Wu, Jinglei Wang, Weixiang Wang, Derong Kong, Pengchao Xu, Xuan Wan, Hongbo Wu, Peijian Tong, Hanting Xia
{"title":"单原子掺杂Zr异质结增强压电催化,通过声动力和物理穿刺协同金属免疫治疗种植体感染。","authors":"Xing Zhou, Jingbo Xie, Xingchen Zhou, Tianyou Ma, Yichen Lu, Yiwen Yang, Zhefei Xie, Houfu Ling, Rui Xu, Mo Wu, Jinglei Wang, Weixiang Wang, Derong Kong, Pengchao Xu, Xuan Wan, Hongbo Wu, Peijian Tong, Hanting Xia","doi":"10.1186/s12951-025-03309-x","DOIUrl":null,"url":null,"abstract":"<p><p>Recent common clinical treatments for implant bacterial infections involve replacing inert implants and using antibiotics. However, these methods remain limited in their effectiveness for pathogen clearance, immune regulation, and osteogenesis. In this study, we developed a Zr-doped heterointerface of SrTiO<sub>3</sub> and Hap (SrTiZrO<sub>3</sub>/Hap) heterojunction coating with single-atom Zr doping and heterogeneous interfaces designed for ultrasound-responsive antimicrobial activity and bone formation. Under ultrasound, the mechanical force exerted by SrTiZrO<sub>3</sub>/Hap enhances its physical puncture and sonodynamic activity, synergizing with the metalloimmunotherapy effect of Zr<sup>4+</sup> for efficient antimicrobial activity. The primary mechanism enhancing sonodynamic activity involves local interfacial polarization from single-atom Zr doping, achieving piezoelectric catalysis in conjunction with electronic polarization from the built-in electric field. SrTiZrO<sub>3</sub>/Hap achieved a 99.3% antibacterial rate against S. aureus and 99.7% against E. coli under ultrasound. Additionally, SrTiZrO<sub>3</sub>/Hap promoted osteogenic differentiation after ultrasound irradiation by activating the PI3K/Akt pathway via its piezoelectric, needle-like topological surface and the release of functional ions, thus accelerating bone repair.</p>","PeriodicalId":16383,"journal":{"name":"Journal of Nanobiotechnology","volume":"23 1","pages":"243"},"PeriodicalIF":10.6000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11931772/pdf/","citationCount":"0","resultStr":"{\"title\":\"Single-atom Zr doped heterojunction enhanced piezocatalysis for implant infection therapy through synergistic metal immunotherapy with sonodynamic and physical puncture.\",\"authors\":\"Xing Zhou, Jingbo Xie, Xingchen Zhou, Tianyou Ma, Yichen Lu, Yiwen Yang, Zhefei Xie, Houfu Ling, Rui Xu, Mo Wu, Jinglei Wang, Weixiang Wang, Derong Kong, Pengchao Xu, Xuan Wan, Hongbo Wu, Peijian Tong, Hanting Xia\",\"doi\":\"10.1186/s12951-025-03309-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Recent common clinical treatments for implant bacterial infections involve replacing inert implants and using antibiotics. However, these methods remain limited in their effectiveness for pathogen clearance, immune regulation, and osteogenesis. In this study, we developed a Zr-doped heterointerface of SrTiO<sub>3</sub> and Hap (SrTiZrO<sub>3</sub>/Hap) heterojunction coating with single-atom Zr doping and heterogeneous interfaces designed for ultrasound-responsive antimicrobial activity and bone formation. Under ultrasound, the mechanical force exerted by SrTiZrO<sub>3</sub>/Hap enhances its physical puncture and sonodynamic activity, synergizing with the metalloimmunotherapy effect of Zr<sup>4+</sup> for efficient antimicrobial activity. The primary mechanism enhancing sonodynamic activity involves local interfacial polarization from single-atom Zr doping, achieving piezoelectric catalysis in conjunction with electronic polarization from the built-in electric field. SrTiZrO<sub>3</sub>/Hap achieved a 99.3% antibacterial rate against S. aureus and 99.7% against E. coli under ultrasound. Additionally, SrTiZrO<sub>3</sub>/Hap promoted osteogenic differentiation after ultrasound irradiation by activating the PI3K/Akt pathway via its piezoelectric, needle-like topological surface and the release of functional ions, thus accelerating bone repair.</p>\",\"PeriodicalId\":16383,\"journal\":{\"name\":\"Journal of Nanobiotechnology\",\"volume\":\"23 1\",\"pages\":\"243\"},\"PeriodicalIF\":10.6000,\"publicationDate\":\"2025-03-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11931772/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nanobiotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1186/s12951-025-03309-x\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanobiotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s12951-025-03309-x","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

最近常见的临床治疗种植体细菌感染包括更换惰性种植体和使用抗生素。然而,这些方法在清除病原体、免疫调节和成骨方面的有效性仍然有限。在这项研究中,我们开发了一种Zr掺杂的SrTiO3和Hap异质结涂层(SrTiZrO3/Hap),该涂层采用单原子Zr掺杂和异质界面设计,用于超声响应抗菌活性和骨形成。超声作用下,SrTiZrO3/Hap施加的机械力增强了其物理穿刺和声动力活性,与Zr4+的金属免疫治疗作用协同作用,具有高效的抗菌活性。增强声动力活性的主要机制涉及单原子Zr掺杂的局部界面极化,实现压电催化与内置电场的电子极化相结合。超声下,SrTiZrO3/Hap对金黄色葡萄球菌和大肠杆菌的抑菌率分别为99.3%和99.7%。此外,SrTiZrO3/Hap通过其压电状针状拓扑表面激活PI3K/Akt通路,释放功能离子,促进超声照射后的成骨分化,从而加速骨修复。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Single-atom Zr doped heterojunction enhanced piezocatalysis for implant infection therapy through synergistic metal immunotherapy with sonodynamic and physical puncture.

Recent common clinical treatments for implant bacterial infections involve replacing inert implants and using antibiotics. However, these methods remain limited in their effectiveness for pathogen clearance, immune regulation, and osteogenesis. In this study, we developed a Zr-doped heterointerface of SrTiO3 and Hap (SrTiZrO3/Hap) heterojunction coating with single-atom Zr doping and heterogeneous interfaces designed for ultrasound-responsive antimicrobial activity and bone formation. Under ultrasound, the mechanical force exerted by SrTiZrO3/Hap enhances its physical puncture and sonodynamic activity, synergizing with the metalloimmunotherapy effect of Zr4+ for efficient antimicrobial activity. The primary mechanism enhancing sonodynamic activity involves local interfacial polarization from single-atom Zr doping, achieving piezoelectric catalysis in conjunction with electronic polarization from the built-in electric field. SrTiZrO3/Hap achieved a 99.3% antibacterial rate against S. aureus and 99.7% against E. coli under ultrasound. Additionally, SrTiZrO3/Hap promoted osteogenic differentiation after ultrasound irradiation by activating the PI3K/Akt pathway via its piezoelectric, needle-like topological surface and the release of functional ions, thus accelerating bone repair.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Nanobiotechnology
Journal of Nanobiotechnology BIOTECHNOLOGY & APPLIED MICROBIOLOGY-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
13.90
自引率
4.90%
发文量
493
审稿时长
16 weeks
期刊介绍: Journal of Nanobiotechnology is an open access peer-reviewed journal communicating scientific and technological advances in the fields of medicine and biology, with an emphasis in their interface with nanoscale sciences. The journal provides biomedical scientists and the international biotechnology business community with the latest developments in the growing field of Nanobiotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信