Ming Yang, Jiangling Zhou, Qiandong Yang, Bo Yu, Juan Cai, Tianyong Hou
{"title":"一种新的大鼠穿刺腰椎间盘突出症模型:定位准确,突出程度可控。","authors":"Ming Yang, Jiangling Zhou, Qiandong Yang, Bo Yu, Juan Cai, Tianyong Hou","doi":"10.1186/s13018-025-05710-6","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Lumbar disc herniation (LDH) is the serious stage of intervertebral disc degeneration (IDD), and the location and degree of intervertebral disc herniation are closely related to clinical symptoms and signs. However, there is currently no low-cost, high-benefit animal model to support in vivo research on LDH.</p><p><strong>Method: </strong>Expose the rat's lumbar 5/6 intervertebral disc through the space between the psoas major and erector spine muscles, and then use different lengths of puncture needles to control the degree of herniation and different puncture angles to push the nucleus pulposus tissue backwards to the different position. Observe the protrusion of intervertebral discs through MRI. Von Frey mechanical pain test and BBB score were used to evaluate the behavior of LDH rats. H&E and SF staining were used to observe the morphological changes after intervertebral disc herniation. Immunofluorescence was used to analyze the expression of Aggrecan (ACAN), IL-1β, TNF-α, and CD31 in intervertebral disc tissue.</p><p><strong>Results: </strong>LDH rat exhibit varying degrees of motor and sensory dysfunction. The nucleus pulposus tissue in the center of the intervertebral disc undergoes degenerative changes, with a decrease in the content of nucleus pulposus cells and proteoglycans, an increase in the expression of inflammatory factors in the protruding tissue, and neovascularization.</p><p><strong>Conclusion: </strong>We have successfully constructed rat models of different types of intervertebral disc herniation, including disc degeneration, bulging, central herniation, and lateral herniation, using the method of puncture of intervertebral discs. This animal model is consistent with the characteristics of LDH in terms of behavior, imaging, and histopathology.</p>","PeriodicalId":16629,"journal":{"name":"Journal of Orthopaedic Surgery and Research","volume":"20 1","pages":"309"},"PeriodicalIF":2.8000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11934670/pdf/","citationCount":"0","resultStr":"{\"title\":\"A novel rat model of lumbar disc herniation induced by puncture: accurate positioning and controllable degree of herniation.\",\"authors\":\"Ming Yang, Jiangling Zhou, Qiandong Yang, Bo Yu, Juan Cai, Tianyong Hou\",\"doi\":\"10.1186/s13018-025-05710-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Lumbar disc herniation (LDH) is the serious stage of intervertebral disc degeneration (IDD), and the location and degree of intervertebral disc herniation are closely related to clinical symptoms and signs. However, there is currently no low-cost, high-benefit animal model to support in vivo research on LDH.</p><p><strong>Method: </strong>Expose the rat's lumbar 5/6 intervertebral disc through the space between the psoas major and erector spine muscles, and then use different lengths of puncture needles to control the degree of herniation and different puncture angles to push the nucleus pulposus tissue backwards to the different position. Observe the protrusion of intervertebral discs through MRI. Von Frey mechanical pain test and BBB score were used to evaluate the behavior of LDH rats. H&E and SF staining were used to observe the morphological changes after intervertebral disc herniation. Immunofluorescence was used to analyze the expression of Aggrecan (ACAN), IL-1β, TNF-α, and CD31 in intervertebral disc tissue.</p><p><strong>Results: </strong>LDH rat exhibit varying degrees of motor and sensory dysfunction. The nucleus pulposus tissue in the center of the intervertebral disc undergoes degenerative changes, with a decrease in the content of nucleus pulposus cells and proteoglycans, an increase in the expression of inflammatory factors in the protruding tissue, and neovascularization.</p><p><strong>Conclusion: </strong>We have successfully constructed rat models of different types of intervertebral disc herniation, including disc degeneration, bulging, central herniation, and lateral herniation, using the method of puncture of intervertebral discs. This animal model is consistent with the characteristics of LDH in terms of behavior, imaging, and histopathology.</p>\",\"PeriodicalId\":16629,\"journal\":{\"name\":\"Journal of Orthopaedic Surgery and Research\",\"volume\":\"20 1\",\"pages\":\"309\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-03-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11934670/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Orthopaedic Surgery and Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s13018-025-05710-6\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ORTHOPEDICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Orthopaedic Surgery and Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13018-025-05710-6","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ORTHOPEDICS","Score":null,"Total":0}
A novel rat model of lumbar disc herniation induced by puncture: accurate positioning and controllable degree of herniation.
Background: Lumbar disc herniation (LDH) is the serious stage of intervertebral disc degeneration (IDD), and the location and degree of intervertebral disc herniation are closely related to clinical symptoms and signs. However, there is currently no low-cost, high-benefit animal model to support in vivo research on LDH.
Method: Expose the rat's lumbar 5/6 intervertebral disc through the space between the psoas major and erector spine muscles, and then use different lengths of puncture needles to control the degree of herniation and different puncture angles to push the nucleus pulposus tissue backwards to the different position. Observe the protrusion of intervertebral discs through MRI. Von Frey mechanical pain test and BBB score were used to evaluate the behavior of LDH rats. H&E and SF staining were used to observe the morphological changes after intervertebral disc herniation. Immunofluorescence was used to analyze the expression of Aggrecan (ACAN), IL-1β, TNF-α, and CD31 in intervertebral disc tissue.
Results: LDH rat exhibit varying degrees of motor and sensory dysfunction. The nucleus pulposus tissue in the center of the intervertebral disc undergoes degenerative changes, with a decrease in the content of nucleus pulposus cells and proteoglycans, an increase in the expression of inflammatory factors in the protruding tissue, and neovascularization.
Conclusion: We have successfully constructed rat models of different types of intervertebral disc herniation, including disc degeneration, bulging, central herniation, and lateral herniation, using the method of puncture of intervertebral discs. This animal model is consistent with the characteristics of LDH in terms of behavior, imaging, and histopathology.
期刊介绍:
Journal of Orthopaedic Surgery and Research is an open access journal that encompasses all aspects of clinical and basic research studies related to musculoskeletal issues.
Orthopaedic research is conducted at clinical and basic science levels. With the advancement of new technologies and the increasing expectation and demand from doctors and patients, we are witnessing an enormous growth in clinical orthopaedic research, particularly in the fields of traumatology, spinal surgery, joint replacement, sports medicine, musculoskeletal tumour management, hand microsurgery, foot and ankle surgery, paediatric orthopaedic, and orthopaedic rehabilitation. The involvement of basic science ranges from molecular, cellular, structural and functional perspectives to tissue engineering, gait analysis, automation and robotic surgery. Implant and biomaterial designs are new disciplines that complement clinical applications.
JOSR encourages the publication of multidisciplinary research with collaboration amongst clinicians and scientists from different disciplines, which will be the trend in the coming decades.