仿生基因传递系统联合细胞外囊泡包膜AAV通过促进血管化和炎症微环境重塑改善糖尿病创面。

IF 10.6 1区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Shan He, Zhenhao Li, Lei Xie, Rongtian Lin, Biying Yan, Bixiang Li, Lingxi Luo, Youshan Xv, Huangding Wen, Yaxuan Liang, Cong Huang, Zhiqing Li
{"title":"仿生基因传递系统联合细胞外囊泡包膜AAV通过促进血管化和炎症微环境重塑改善糖尿病创面。","authors":"Shan He, Zhenhao Li, Lei Xie, Rongtian Lin, Biying Yan, Bixiang Li, Lingxi Luo, Youshan Xv, Huangding Wen, Yaxuan Liang, Cong Huang, Zhiqing Li","doi":"10.1186/s12951-025-03261-w","DOIUrl":null,"url":null,"abstract":"<p><p>Adeno-associated virus (AAV)-mediated gene transfer has demonstrated potential in effectively promoting re-epithelialization and angiogenesis. AAV vector has a safety profile; however, the relatively low delivery efficacy in chronic wound with an inflammatory microenvironment and external exposure has limited its prospective clinical translation. Here, we generated AAV-containing EVs (EV-AAVs) from cultured HEK 293T cells and confirmed that the gene transfer efficiency of VEGF-EV-AAV significantly surpassed that of free AAV. Subsequently, a biomimetic gene delivery system VEGF-EV-AAV/MSC-Exo@FHCCgel developing, and synergistically enhances anti-inflammation and transfection efficiency in the combination of human umbilical cord mesenchymal stem cell-derived exosomes (hUC-MSC-Exo). Upon reaching physiological temperature, this hydrogel system transitions to a gel state, maintaining AAV bioactivity and facilitating a sustained release of the encapsulated vesicles. The encapsulation strategy enables the vesicles to rapidly fuse with endothelial cell membranes, ensuring controlled expression of endogenous VEGF. Results revealed that VEGF-EV-AAV/MSC-Exo@FHCCgel alleviates mitochondrial function in endotheliocyte under oxidative stress. Furthermore, it eliminates senescent macrophages by inhabitation of cyclic GMP-AMP (cGAMP) synthase (cGAS)-stimulator of interferon genes (STING) pathway to promote efferocytosis. The system increases Treg cells accumulation, leading to a reduction of inflammatory cytokines. Collectively, the biomimetic gene delivery system represents a promising multi-faceted strategy for chronic wound healing.</p>","PeriodicalId":16383,"journal":{"name":"Journal of Nanobiotechnology","volume":"23 1","pages":"242"},"PeriodicalIF":10.6000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11931832/pdf/","citationCount":"0","resultStr":"{\"title\":\"Biomimetic gene delivery system coupled with extracellular vesicle-encapsulated AAV for improving diabetic wound through promoting vascularization and remodeling of inflammatory microenvironment.\",\"authors\":\"Shan He, Zhenhao Li, Lei Xie, Rongtian Lin, Biying Yan, Bixiang Li, Lingxi Luo, Youshan Xv, Huangding Wen, Yaxuan Liang, Cong Huang, Zhiqing Li\",\"doi\":\"10.1186/s12951-025-03261-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Adeno-associated virus (AAV)-mediated gene transfer has demonstrated potential in effectively promoting re-epithelialization and angiogenesis. AAV vector has a safety profile; however, the relatively low delivery efficacy in chronic wound with an inflammatory microenvironment and external exposure has limited its prospective clinical translation. Here, we generated AAV-containing EVs (EV-AAVs) from cultured HEK 293T cells and confirmed that the gene transfer efficiency of VEGF-EV-AAV significantly surpassed that of free AAV. Subsequently, a biomimetic gene delivery system VEGF-EV-AAV/MSC-Exo@FHCCgel developing, and synergistically enhances anti-inflammation and transfection efficiency in the combination of human umbilical cord mesenchymal stem cell-derived exosomes (hUC-MSC-Exo). Upon reaching physiological temperature, this hydrogel system transitions to a gel state, maintaining AAV bioactivity and facilitating a sustained release of the encapsulated vesicles. The encapsulation strategy enables the vesicles to rapidly fuse with endothelial cell membranes, ensuring controlled expression of endogenous VEGF. Results revealed that VEGF-EV-AAV/MSC-Exo@FHCCgel alleviates mitochondrial function in endotheliocyte under oxidative stress. Furthermore, it eliminates senescent macrophages by inhabitation of cyclic GMP-AMP (cGAMP) synthase (cGAS)-stimulator of interferon genes (STING) pathway to promote efferocytosis. The system increases Treg cells accumulation, leading to a reduction of inflammatory cytokines. Collectively, the biomimetic gene delivery system represents a promising multi-faceted strategy for chronic wound healing.</p>\",\"PeriodicalId\":16383,\"journal\":{\"name\":\"Journal of Nanobiotechnology\",\"volume\":\"23 1\",\"pages\":\"242\"},\"PeriodicalIF\":10.6000,\"publicationDate\":\"2025-03-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11931832/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nanobiotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1186/s12951-025-03261-w\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanobiotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s12951-025-03261-w","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

腺相关病毒(AAV)介导的基因转移已被证明具有有效促进再上皮化和血管生成的潜力。AAV载体具有安全性;然而,在炎症微环境和外部暴露的慢性伤口中,相对较低的递送效率限制了其临床应用前景。在此,我们从培养的HEK 293T细胞中生成了含有AAV的ev (ev -AAV),并证实VEGF-EV-AAV的基因转移效率显著优于游离AAV。随后,一种仿生基因传递系统VEGF-EV-AAV/MSC-Exo@FHCCgel开发出来,并协同提高了人脐带间充质干细胞衍生外泌体(hUC-MSC-Exo)的抗炎症和转染效率。在达到生理温度后,这种水凝胶系统转变为凝胶状态,维持AAV的生物活性并促进囊泡的持续释放。包封策略使囊泡能够快速与内皮细胞膜融合,确保内源性VEGF的可控表达。结果显示VEGF-EV-AAV/MSC-Exo@FHCCgel可减轻氧化应激下内皮细胞线粒体功能。此外,它通过居住环GMP-AMP (cGAMP)合成酶(cGAS)-干扰素基因刺激因子(STING)通路来促进efferocytosis,从而消除衰老的巨噬细胞。该系统增加Treg细胞的积累,导致炎症细胞因子的减少。总的来说,仿生基因传递系统代表了一个有前途的多方面的策略慢性伤口愈合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Biomimetic gene delivery system coupled with extracellular vesicle-encapsulated AAV for improving diabetic wound through promoting vascularization and remodeling of inflammatory microenvironment.

Adeno-associated virus (AAV)-mediated gene transfer has demonstrated potential in effectively promoting re-epithelialization and angiogenesis. AAV vector has a safety profile; however, the relatively low delivery efficacy in chronic wound with an inflammatory microenvironment and external exposure has limited its prospective clinical translation. Here, we generated AAV-containing EVs (EV-AAVs) from cultured HEK 293T cells and confirmed that the gene transfer efficiency of VEGF-EV-AAV significantly surpassed that of free AAV. Subsequently, a biomimetic gene delivery system VEGF-EV-AAV/MSC-Exo@FHCCgel developing, and synergistically enhances anti-inflammation and transfection efficiency in the combination of human umbilical cord mesenchymal stem cell-derived exosomes (hUC-MSC-Exo). Upon reaching physiological temperature, this hydrogel system transitions to a gel state, maintaining AAV bioactivity and facilitating a sustained release of the encapsulated vesicles. The encapsulation strategy enables the vesicles to rapidly fuse with endothelial cell membranes, ensuring controlled expression of endogenous VEGF. Results revealed that VEGF-EV-AAV/MSC-Exo@FHCCgel alleviates mitochondrial function in endotheliocyte under oxidative stress. Furthermore, it eliminates senescent macrophages by inhabitation of cyclic GMP-AMP (cGAMP) synthase (cGAS)-stimulator of interferon genes (STING) pathway to promote efferocytosis. The system increases Treg cells accumulation, leading to a reduction of inflammatory cytokines. Collectively, the biomimetic gene delivery system represents a promising multi-faceted strategy for chronic wound healing.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Nanobiotechnology
Journal of Nanobiotechnology BIOTECHNOLOGY & APPLIED MICROBIOLOGY-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
13.90
自引率
4.90%
发文量
493
审稿时长
16 weeks
期刊介绍: Journal of Nanobiotechnology is an open access peer-reviewed journal communicating scientific and technological advances in the fields of medicine and biology, with an emphasis in their interface with nanoscale sciences. The journal provides biomedical scientists and the international biotechnology business community with the latest developments in the growing field of Nanobiotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信