Andrew P Latham, Miha Rožič, Benjamin M Webb, Andrej Sali
{"title":"基于集成建模平台的集成时空建模教程。","authors":"Andrew P Latham, Miha Rožič, Benjamin M Webb, Andrej Sali","doi":"10.1002/pro.70107","DOIUrl":null,"url":null,"abstract":"<p><p>Cells function through dynamic interactions between macromolecules. Detailed characterization of the dynamics of large biomolecular systems is often not feasible by individual biophysical methods. In such cases, it may be possible to compute useful models by integrating multiple sources of information. We have previously developed an integrative method to model dynamic processes by computing biomolecular heterogeneity at fixed time points, then generating static integrative structural modes for each of these heterogeneity models, and finally connecting these static models to produce a scored trajectory model that depicts the process. Here, we demonstrate how to compute, score, and assess these integrative spatiotemporal models using our open-source Integrative Modeling Platform (IMP) program (https://integrativemodeling.org/).</p>","PeriodicalId":20761,"journal":{"name":"Protein Science","volume":"34 4","pages":"e70107"},"PeriodicalIF":4.5000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11934212/pdf/","citationCount":"0","resultStr":"{\"title\":\"Tutorial on integrative spatiotemporal modeling by integrative modeling platform.\",\"authors\":\"Andrew P Latham, Miha Rožič, Benjamin M Webb, Andrej Sali\",\"doi\":\"10.1002/pro.70107\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cells function through dynamic interactions between macromolecules. Detailed characterization of the dynamics of large biomolecular systems is often not feasible by individual biophysical methods. In such cases, it may be possible to compute useful models by integrating multiple sources of information. We have previously developed an integrative method to model dynamic processes by computing biomolecular heterogeneity at fixed time points, then generating static integrative structural modes for each of these heterogeneity models, and finally connecting these static models to produce a scored trajectory model that depicts the process. Here, we demonstrate how to compute, score, and assess these integrative spatiotemporal models using our open-source Integrative Modeling Platform (IMP) program (https://integrativemodeling.org/).</p>\",\"PeriodicalId\":20761,\"journal\":{\"name\":\"Protein Science\",\"volume\":\"34 4\",\"pages\":\"e70107\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2025-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11934212/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Protein Science\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1002/pro.70107\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Protein Science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/pro.70107","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Tutorial on integrative spatiotemporal modeling by integrative modeling platform.
Cells function through dynamic interactions between macromolecules. Detailed characterization of the dynamics of large biomolecular systems is often not feasible by individual biophysical methods. In such cases, it may be possible to compute useful models by integrating multiple sources of information. We have previously developed an integrative method to model dynamic processes by computing biomolecular heterogeneity at fixed time points, then generating static integrative structural modes for each of these heterogeneity models, and finally connecting these static models to produce a scored trajectory model that depicts the process. Here, we demonstrate how to compute, score, and assess these integrative spatiotemporal models using our open-source Integrative Modeling Platform (IMP) program (https://integrativemodeling.org/).
期刊介绍:
Protein Science, the flagship journal of The Protein Society, is a publication that focuses on advancing fundamental knowledge in the field of protein molecules. The journal welcomes original reports and review articles that contribute to our understanding of protein function, structure, folding, design, and evolution.
Additionally, Protein Science encourages papers that explore the applications of protein science in various areas such as therapeutics, protein-based biomaterials, bionanotechnology, synthetic biology, and bioelectronics.
The journal accepts manuscript submissions in any suitable format for review, with the requirement of converting the manuscript to journal-style format only upon acceptance for publication.
Protein Science is indexed and abstracted in numerous databases, including the Agricultural & Environmental Science Database (ProQuest), Biological Science Database (ProQuest), CAS: Chemical Abstracts Service (ACS), Embase (Elsevier), Health & Medical Collection (ProQuest), Health Research Premium Collection (ProQuest), Materials Science & Engineering Database (ProQuest), MEDLINE/PubMed (NLM), Natural Science Collection (ProQuest), and SciTech Premium Collection (ProQuest).