{"title":"金丝桃素纳米颗粒相关光动力疗法通过SERPINE1调节肝细胞癌的生物学行为。","authors":"Xuanzhi Yan, Jiaxing Fan, Wanying Qin, Minjun Liao, Siming Li, Liya Suo, Yujin Xie, Xin Jiang, Dengfeng Zou, Weijia Liao","doi":"10.2147/IJN.S507037","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>In recent years, photodynamic therapy (PDT) has gradually attracted the attention of researchers due to its therapeutic potential for treating malignant tumors. Hypericin (HC) is anticipated to enhance the therapeutic effect on tumors as an efficient photosensitizer (PS) for PDT. However, the role and mechanism of PDT in hepatocellular carcinoma (HCC) remain unclear.</p><p><strong>Methods: </strong>In this study, we investigated the efficacy of hypericin nanoparticles (HC-NPs)-associated PDT (HC-NPs-PDT) on HCC to explore its anti-HCC mechanism both in vitro and in vivo. Cellular molecular experiments, as well as HCC mouse tumor models, were utilized to validate the impact of HC-NPs-PDT on HCC. Additionally, molecular docking and related experiments were employed to investigate its potential mechanism.</p><p><strong>Results: </strong>Our findings demonstrated that HC-NPs-PDT effectively inhibits the viability, migration, and invasion abilities of HCC cells, as well as suppresses the growth of subcutaneous HCC tumors in BALB/C-nu nude mice. SERPINE1 (also known as PAI, PAI-1, PAI1, PLANH1) may be a key target of HC, as its mRNA and protein levels were significantly up-regulated following HC-NPs-PDT. This upregulation led to a decrease in mitochondrial membrane potential and promoted apoptosis of HCC cells. Additionally, inhibition of SERPINE1 partially restored changes in mitochondrial membrane potential.</p><p><strong>Conclusion: </strong>These results suggest that HC-NPs-PDT may regulate the biological behavior of HCC by upregulating SERPINE1 expression, offering a new perspective for treating HCC.</p>","PeriodicalId":14084,"journal":{"name":"International Journal of Nanomedicine","volume":"20 ","pages":"3713-3730"},"PeriodicalIF":6.6000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11932138/pdf/","citationCount":"0","resultStr":"{\"title\":\"Hypericin Nanoparticles-Associated Photodynamic Therapy Modulates the Biological Behavior of Hepatocellular Carcinoma by SERPINE1.\",\"authors\":\"Xuanzhi Yan, Jiaxing Fan, Wanying Qin, Minjun Liao, Siming Li, Liya Suo, Yujin Xie, Xin Jiang, Dengfeng Zou, Weijia Liao\",\"doi\":\"10.2147/IJN.S507037\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>In recent years, photodynamic therapy (PDT) has gradually attracted the attention of researchers due to its therapeutic potential for treating malignant tumors. Hypericin (HC) is anticipated to enhance the therapeutic effect on tumors as an efficient photosensitizer (PS) for PDT. However, the role and mechanism of PDT in hepatocellular carcinoma (HCC) remain unclear.</p><p><strong>Methods: </strong>In this study, we investigated the efficacy of hypericin nanoparticles (HC-NPs)-associated PDT (HC-NPs-PDT) on HCC to explore its anti-HCC mechanism both in vitro and in vivo. Cellular molecular experiments, as well as HCC mouse tumor models, were utilized to validate the impact of HC-NPs-PDT on HCC. Additionally, molecular docking and related experiments were employed to investigate its potential mechanism.</p><p><strong>Results: </strong>Our findings demonstrated that HC-NPs-PDT effectively inhibits the viability, migration, and invasion abilities of HCC cells, as well as suppresses the growth of subcutaneous HCC tumors in BALB/C-nu nude mice. SERPINE1 (also known as PAI, PAI-1, PAI1, PLANH1) may be a key target of HC, as its mRNA and protein levels were significantly up-regulated following HC-NPs-PDT. This upregulation led to a decrease in mitochondrial membrane potential and promoted apoptosis of HCC cells. Additionally, inhibition of SERPINE1 partially restored changes in mitochondrial membrane potential.</p><p><strong>Conclusion: </strong>These results suggest that HC-NPs-PDT may regulate the biological behavior of HCC by upregulating SERPINE1 expression, offering a new perspective for treating HCC.</p>\",\"PeriodicalId\":14084,\"journal\":{\"name\":\"International Journal of Nanomedicine\",\"volume\":\"20 \",\"pages\":\"3713-3730\"},\"PeriodicalIF\":6.6000,\"publicationDate\":\"2025-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11932138/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Nanomedicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2147/IJN.S507037\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"NANOSCIENCE & NANOTECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Nanomedicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2147/IJN.S507037","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
Hypericin Nanoparticles-Associated Photodynamic Therapy Modulates the Biological Behavior of Hepatocellular Carcinoma by SERPINE1.
Background: In recent years, photodynamic therapy (PDT) has gradually attracted the attention of researchers due to its therapeutic potential for treating malignant tumors. Hypericin (HC) is anticipated to enhance the therapeutic effect on tumors as an efficient photosensitizer (PS) for PDT. However, the role and mechanism of PDT in hepatocellular carcinoma (HCC) remain unclear.
Methods: In this study, we investigated the efficacy of hypericin nanoparticles (HC-NPs)-associated PDT (HC-NPs-PDT) on HCC to explore its anti-HCC mechanism both in vitro and in vivo. Cellular molecular experiments, as well as HCC mouse tumor models, were utilized to validate the impact of HC-NPs-PDT on HCC. Additionally, molecular docking and related experiments were employed to investigate its potential mechanism.
Results: Our findings demonstrated that HC-NPs-PDT effectively inhibits the viability, migration, and invasion abilities of HCC cells, as well as suppresses the growth of subcutaneous HCC tumors in BALB/C-nu nude mice. SERPINE1 (also known as PAI, PAI-1, PAI1, PLANH1) may be a key target of HC, as its mRNA and protein levels were significantly up-regulated following HC-NPs-PDT. This upregulation led to a decrease in mitochondrial membrane potential and promoted apoptosis of HCC cells. Additionally, inhibition of SERPINE1 partially restored changes in mitochondrial membrane potential.
Conclusion: These results suggest that HC-NPs-PDT may regulate the biological behavior of HCC by upregulating SERPINE1 expression, offering a new perspective for treating HCC.
期刊介绍:
The International Journal of Nanomedicine is a globally recognized journal that focuses on the applications of nanotechnology in the biomedical field. It is a peer-reviewed and open-access publication that covers diverse aspects of this rapidly evolving research area.
With its strong emphasis on the clinical potential of nanoparticles in disease diagnostics, prevention, and treatment, the journal aims to showcase cutting-edge research and development in the field.
Starting from now, the International Journal of Nanomedicine will not accept meta-analyses for publication.