依达拉奉通过增强mettl14介导的Aldh1l1的m6A甲基化,抑制diquat诱导的神经元铁吊并减轻急性中枢神经系统损伤。

IF 3.6 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Free Radical Research Pub Date : 2025-03-01 Epub Date: 2025-03-28 DOI:10.1080/10715762.2025.2482774
Liaozhang Wu, Zunwei Luo, Fuli Luo, Tingting Huang, Yifang Cen, Guosheng Rao, Zhijie Zhao, Renyang Ou, Manhong Zhou
{"title":"依达拉奉通过增强mettl14介导的Aldh1l1的m6A甲基化,抑制diquat诱导的神经元铁吊并减轻急性中枢神经系统损伤。","authors":"Liaozhang Wu, Zunwei Luo, Fuli Luo, Tingting Huang, Yifang Cen, Guosheng Rao, Zhijie Zhao, Renyang Ou, Manhong Zhou","doi":"10.1080/10715762.2025.2482774","DOIUrl":null,"url":null,"abstract":"<p><p>The biological effects of edaravone (Eda), a free radical scavenger, include anti-inflammatory, antioxidant, and neuroprotective qualities. Nevertheless, the function and potential mechanisms of Eda in central nervous system injury damage are still unknown. A rat model of acute diquat toxicity was constructed to observe the pathological changes in brain tissues after diquat administration. The changes of mitophagy and ferroptosis in PC12 cells were assessed to the protective activity of Eda. To assess the methylation levels of m6A RNA, the EpiQuik m6A RNA Methylation Quantification Kit was utilized. RIP, dual luciferase reporter assay and mRNA stability detection confirm the relationship between METTL14 and Aldh11l1. Knockdown and overexpression experiments were performed to determine the effects of METTL14 and Aldh1l1 on rats and PC12 cells stimulated with diquat under Eda treatment. Eda dramatically ameliorated diquat-induced central nervous system injury. Eda notably attenuated apoptosis, pro-inflammatory cytokines activation, and oxidative stress damage in diquat-induced rats. Eda significantly suppressed apoptosis, mitophagy and ferroptosis after diquat-stimulated PC12 cells. Mitophagy inhibitor Mdivi-1 reversed the induction of ferroptosis effects of diquat via decreased Fe2+ content and increased Ca2+ level. knockdown of METTL14 reversed the therapeutic effect of Eda on diquat-induced injury. Eda promoted METTL14-mediated Aldh1l1 m6A methylation and alleviates acute central nervous system injury induced by diquat in vivo and in vitro. Eda has a protective effect on diquat-induced nervous system injury, and its mechanism may be related to the activation of m6A modification of Aldh11l1 by METTL14 and the inhibition of mitophagy and.</p><p><p>ferroptosis.</p>","PeriodicalId":12411,"journal":{"name":"Free Radical Research","volume":" ","pages":"274-288"},"PeriodicalIF":3.6000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Edaravone inhibits neuronal ferroptosis and alleviates acute Central nervous system injury induced by diquat <i>via</i> enhancement of METTL14-mediated m6A methylation of Aldh1l1.\",\"authors\":\"Liaozhang Wu, Zunwei Luo, Fuli Luo, Tingting Huang, Yifang Cen, Guosheng Rao, Zhijie Zhao, Renyang Ou, Manhong Zhou\",\"doi\":\"10.1080/10715762.2025.2482774\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The biological effects of edaravone (Eda), a free radical scavenger, include anti-inflammatory, antioxidant, and neuroprotective qualities. Nevertheless, the function and potential mechanisms of Eda in central nervous system injury damage are still unknown. A rat model of acute diquat toxicity was constructed to observe the pathological changes in brain tissues after diquat administration. The changes of mitophagy and ferroptosis in PC12 cells were assessed to the protective activity of Eda. To assess the methylation levels of m6A RNA, the EpiQuik m6A RNA Methylation Quantification Kit was utilized. RIP, dual luciferase reporter assay and mRNA stability detection confirm the relationship between METTL14 and Aldh11l1. Knockdown and overexpression experiments were performed to determine the effects of METTL14 and Aldh1l1 on rats and PC12 cells stimulated with diquat under Eda treatment. Eda dramatically ameliorated diquat-induced central nervous system injury. Eda notably attenuated apoptosis, pro-inflammatory cytokines activation, and oxidative stress damage in diquat-induced rats. Eda significantly suppressed apoptosis, mitophagy and ferroptosis after diquat-stimulated PC12 cells. Mitophagy inhibitor Mdivi-1 reversed the induction of ferroptosis effects of diquat via decreased Fe2+ content and increased Ca2+ level. knockdown of METTL14 reversed the therapeutic effect of Eda on diquat-induced injury. Eda promoted METTL14-mediated Aldh1l1 m6A methylation and alleviates acute central nervous system injury induced by diquat in vivo and in vitro. Eda has a protective effect on diquat-induced nervous system injury, and its mechanism may be related to the activation of m6A modification of Aldh11l1 by METTL14 and the inhibition of mitophagy and.</p><p><p>ferroptosis.</p>\",\"PeriodicalId\":12411,\"journal\":{\"name\":\"Free Radical Research\",\"volume\":\" \",\"pages\":\"274-288\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2025-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Free Radical Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/10715762.2025.2482774\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/3/28 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Free Radical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/10715762.2025.2482774","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/28 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

背景:依达拉奉是一种自由基清除剂,具有抗炎、抗氧化和神经保护等生物学效应。然而,Eda在中枢神经系统损伤中的作用及其潜在机制尚不清楚。方法:建立大鼠急性双奎特中毒模型,观察双奎特给药后脑组织的病理变化。观察Eda对PC12细胞线粒体自噬和铁凋亡的影响。为了评估m6A RNA的甲基化水平,使用EpiQuik m6A RNA甲基化定量试剂盒。RIP、双荧光素酶报告基因实验和mRNA稳定性检测证实了METTL14和Aldh11l1之间的关系。通过敲低和过表达实验,研究METTL14和Aldh1l1对Eda处理下diquat刺激大鼠和PC12细胞的影响。结果:Eda可显著改善diquat诱导的中枢神经系统损伤。Eda显著减轻了diquat诱导大鼠的细胞凋亡、促炎细胞因子激活和氧化应激损伤。Eda显著抑制diquat刺激后PC12细胞的凋亡、线粒体自噬和铁下垂。线粒体自噬抑制剂Mdivi-1通过降低Fe2+含量和增加Ca2+水平逆转了diquat诱导铁下垂的作用。METTL14的敲低逆转了Eda对diquat诱导损伤的治疗作用。Eda促进mettl14介导的Aldh1l1 m6A甲基化,减轻地奎特诱导的急性中枢神经系统损伤。结论:Eda对diquat诱导的神经系统损伤具有保护作用,其机制可能与METTL14激活Aldh11l1的m6A修饰,抑制线粒体自噬和铁凋亡有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Edaravone inhibits neuronal ferroptosis and alleviates acute Central nervous system injury induced by diquat via enhancement of METTL14-mediated m6A methylation of Aldh1l1.

The biological effects of edaravone (Eda), a free radical scavenger, include anti-inflammatory, antioxidant, and neuroprotective qualities. Nevertheless, the function and potential mechanisms of Eda in central nervous system injury damage are still unknown. A rat model of acute diquat toxicity was constructed to observe the pathological changes in brain tissues after diquat administration. The changes of mitophagy and ferroptosis in PC12 cells were assessed to the protective activity of Eda. To assess the methylation levels of m6A RNA, the EpiQuik m6A RNA Methylation Quantification Kit was utilized. RIP, dual luciferase reporter assay and mRNA stability detection confirm the relationship between METTL14 and Aldh11l1. Knockdown and overexpression experiments were performed to determine the effects of METTL14 and Aldh1l1 on rats and PC12 cells stimulated with diquat under Eda treatment. Eda dramatically ameliorated diquat-induced central nervous system injury. Eda notably attenuated apoptosis, pro-inflammatory cytokines activation, and oxidative stress damage in diquat-induced rats. Eda significantly suppressed apoptosis, mitophagy and ferroptosis after diquat-stimulated PC12 cells. Mitophagy inhibitor Mdivi-1 reversed the induction of ferroptosis effects of diquat via decreased Fe2+ content and increased Ca2+ level. knockdown of METTL14 reversed the therapeutic effect of Eda on diquat-induced injury. Eda promoted METTL14-mediated Aldh1l1 m6A methylation and alleviates acute central nervous system injury induced by diquat in vivo and in vitro. Eda has a protective effect on diquat-induced nervous system injury, and its mechanism may be related to the activation of m6A modification of Aldh11l1 by METTL14 and the inhibition of mitophagy and.

ferroptosis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Free Radical Research
Free Radical Research 生物-生化与分子生物学
CiteScore
6.70
自引率
0.00%
发文量
47
审稿时长
3 months
期刊介绍: Free Radical Research publishes high-quality research papers, hypotheses and reviews in free radicals and other reactive species in biological, clinical, environmental and other systems; redox signalling; antioxidants, including diet-derived antioxidants and other relevant aspects of human nutrition; and oxidative damage, mechanisms and measurement.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信