一种瘦素受体突变会损害母羊的生育能力,导致雄性和雌性老鼠的青春期延迟。

IF 3.8 3区 医学 Q2 ENDOCRINOLOGY & METABOLISM
Rebecca A Lord, Megan A Inglis, Jennifer L Juengel, Greg M Anderson
{"title":"一种瘦素受体突变会损害母羊的生育能力,导致雄性和雌性老鼠的青春期延迟。","authors":"Rebecca A Lord, Megan A Inglis, Jennifer L Juengel, Greg M Anderson","doi":"10.1210/endocr/bqaf058","DOIUrl":null,"url":null,"abstract":"<p><p>Reproductive function is tightly linked to nutritional status due to its high energetic demands. Leptin, a key adipose tissue-derived hormone signalling energy reserves to the brain, integrates metabolic status with the hypothalamic-pituitary-gonadal axis to ensure reproductive function is maintained or suppressed appropriately. Mutations in leptin or its receptor (LepR) are known to cause infertility and obesity in mice. In Davisdale ewes, 2 naturally occurring LepR mutations (R62C and P1019S) were associated with delayed puberty and subfertility, but their effects in males or in other species remain to be determined. This study examined the impact of analogous LepR mutations (A63C and P1018S) in mice using CRISPR-Cas9 gene editing. Puberty onset, adult fertility, and metabolic phenotypes were assessed in wild-type, heterozygous, and homozygous mutant mice. The A63C mutation, located in the extracellular domain of the receptor, resulted in increased body weight and adiposity in females, along with delays in puberty onset in both sexes. Despite these delays, adult reproductive function was maintained. Immunohistochemical analysis revealed no detectable reductions in leptin-induced pSTAT3, pERK1/2, or pmTOR signalling in the hypothalamic arcuate nucleus in either mutant line, indicating these pathways remain largely intact. These findings demonstrate the conserved importance of this region of the leptin receptor for puberty onset and adiposity across species, but also the resilience of leptin signalling in preserving reproductive function despite genetic variation.</p>","PeriodicalId":11819,"journal":{"name":"Endocrinology","volume":" ","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Leptin Receptor Mutation Which Impairs Fertility in Ewes Causes Delayed Puberty in Male and Female Mice.\",\"authors\":\"Rebecca A Lord, Megan A Inglis, Jennifer L Juengel, Greg M Anderson\",\"doi\":\"10.1210/endocr/bqaf058\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Reproductive function is tightly linked to nutritional status due to its high energetic demands. Leptin, a key adipose tissue-derived hormone signalling energy reserves to the brain, integrates metabolic status with the hypothalamic-pituitary-gonadal axis to ensure reproductive function is maintained or suppressed appropriately. Mutations in leptin or its receptor (LepR) are known to cause infertility and obesity in mice. In Davisdale ewes, 2 naturally occurring LepR mutations (R62C and P1019S) were associated with delayed puberty and subfertility, but their effects in males or in other species remain to be determined. This study examined the impact of analogous LepR mutations (A63C and P1018S) in mice using CRISPR-Cas9 gene editing. Puberty onset, adult fertility, and metabolic phenotypes were assessed in wild-type, heterozygous, and homozygous mutant mice. The A63C mutation, located in the extracellular domain of the receptor, resulted in increased body weight and adiposity in females, along with delays in puberty onset in both sexes. Despite these delays, adult reproductive function was maintained. Immunohistochemical analysis revealed no detectable reductions in leptin-induced pSTAT3, pERK1/2, or pmTOR signalling in the hypothalamic arcuate nucleus in either mutant line, indicating these pathways remain largely intact. These findings demonstrate the conserved importance of this region of the leptin receptor for puberty onset and adiposity across species, but also the resilience of leptin signalling in preserving reproductive function despite genetic variation.</p>\",\"PeriodicalId\":11819,\"journal\":{\"name\":\"Endocrinology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-03-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Endocrinology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1210/endocr/bqaf058\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Endocrinology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1210/endocr/bqaf058","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

摘要

生殖功能与营养状况密切相关,因为它需要大量的能量。瘦素是一种关键的脂肪组织来源的激素,将能量储备信号传递给大脑,将代谢状态与下丘脑-垂体-性腺轴结合起来,以确保生殖功能得到适当的维持或抑制。已知瘦素或其受体(LepR)的突变会导致小鼠不孕和肥胖。在Davisdale母羊中,两种自然发生的LepR突变(R62C和P1019S)与青春期延迟和生育能力低下有关,但它们对雄性或其他物种的影响仍有待确定。本研究利用CRISPR-Cas9基因编辑技术检测了类似的LepR突变(A63C和P1018S)对小鼠的影响。评估了野生型、杂合子和纯合子突变小鼠的青春期开始、成年生育力和代谢表型。A63C突变位于受体的细胞外区域,导致女性体重增加和肥胖,同时男女的青春期开始延迟。尽管有这些延迟,成人的生殖功能仍得以维持。免疫组织化学分析显示,在两种突变系中,瘦素诱导的下丘脑弓状核pSTAT3、pERK1/2或pmTOR信号传导均未检测到减少,表明这些途径基本保持完整。这些发现证明了瘦素受体的这一区域在不同物种的青春期开始和肥胖中具有保守的重要性,但也证明了尽管遗传变异,瘦素信号传导在保持生殖功能方面的弹性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Leptin Receptor Mutation Which Impairs Fertility in Ewes Causes Delayed Puberty in Male and Female Mice.

Reproductive function is tightly linked to nutritional status due to its high energetic demands. Leptin, a key adipose tissue-derived hormone signalling energy reserves to the brain, integrates metabolic status with the hypothalamic-pituitary-gonadal axis to ensure reproductive function is maintained or suppressed appropriately. Mutations in leptin or its receptor (LepR) are known to cause infertility and obesity in mice. In Davisdale ewes, 2 naturally occurring LepR mutations (R62C and P1019S) were associated with delayed puberty and subfertility, but their effects in males or in other species remain to be determined. This study examined the impact of analogous LepR mutations (A63C and P1018S) in mice using CRISPR-Cas9 gene editing. Puberty onset, adult fertility, and metabolic phenotypes were assessed in wild-type, heterozygous, and homozygous mutant mice. The A63C mutation, located in the extracellular domain of the receptor, resulted in increased body weight and adiposity in females, along with delays in puberty onset in both sexes. Despite these delays, adult reproductive function was maintained. Immunohistochemical analysis revealed no detectable reductions in leptin-induced pSTAT3, pERK1/2, or pmTOR signalling in the hypothalamic arcuate nucleus in either mutant line, indicating these pathways remain largely intact. These findings demonstrate the conserved importance of this region of the leptin receptor for puberty onset and adiposity across species, but also the resilience of leptin signalling in preserving reproductive function despite genetic variation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Endocrinology
Endocrinology 医学-内分泌学与代谢
CiteScore
8.10
自引率
4.20%
发文量
195
审稿时长
2-3 weeks
期刊介绍: The mission of Endocrinology is to be the authoritative source of emerging hormone science and to disseminate that new knowledge to scientists, clinicians, and the public in a way that will enable "hormone science to health." Endocrinology welcomes the submission of original research investigating endocrine systems and diseases at all levels of biological organization, incorporating molecular mechanistic studies, such as hormone-receptor interactions, in all areas of endocrinology, as well as cross-disciplinary and integrative studies. The editors of Endocrinology encourage the submission of research in emerging areas not traditionally recognized as endocrinology or metabolism in addition to the following traditionally recognized fields: Adrenal; Bone Health and Osteoporosis; Cardiovascular Endocrinology; Diabetes; Endocrine-Disrupting Chemicals; Endocrine Neoplasia and Cancer; Growth; Neuroendocrinology; Nuclear Receptors and Their Ligands; Obesity; Reproductive Endocrinology; Signaling Pathways; and Thyroid.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信