下一代陆地表面模型对叶片水平性状可塑性的时间约束。

IF 3.6 2区 生物学 Q1 PLANT SCIENCES
A Odé, N G Smith, K T Rebel, H J de Boer
{"title":"下一代陆地表面模型对叶片水平性状可塑性的时间约束。","authors":"A Odé, N G Smith, K T Rebel, H J de Boer","doi":"10.1093/aob/mcaf045","DOIUrl":null,"url":null,"abstract":"<p><strong>Background and aims: </strong>Dynamic global vegetation models (DGVMs) are essential for quantifying the role of terrestrial ecosystems in the Earth's climate system, but struggle with uncertainty and complexity. Eco-evolutionary optimality (EEO) theory provides a promising approach to improve DGVMs based on the premise that leaf carbon gain is optimized with resource costs. However, the timescales at which plant traits can adjust to environmental changes are not yet systematically incorporated in EEO-based models. Our aims were to identify temporal constraints on key leaf photosynthetic and leaf functional traits, and develop a conceptual framework for incorporation of temporal leaf trait dynamics in EEO-based models.</p><p><strong>Methods: </strong>We reviewed scientific literature on temporal responses of leaf traits associated with stomata and hydraulics, photosynthetic biochemistry, and morphology and lifespan. Subsequent response times were categorized from fast to slow considering physiological, phenotypical (acclimation), and evolutionary (adaptation) mechanisms. We constructed a conceptual framework including several key leaf traits identified from the literature review. We considered temporal separation of dynamics in the leaf interior to atmospheric CO2 concentration (ci:ca) from the optimal ci:ca ratio χ(optimal), and dynamics in stomatal conductance within the constraint of the anatomical maximum stomatal conductance (gsmax). A proof-of-concept was provided by modelling temporally-separated responses in these trait combinations to CO2 and humidity.</p><p><strong>Key results: </strong>We identified 15 leaf traits crucial for EEO-based modelling and determined their response mechanisms and timescales. Physiological and phenotypical response mechanisms were considered most relevant for modelling EEO-based trait dynamics, while evolutionary constraints limit response ranges. Our conceptual framework demonstrated an approach to separate near-instantaneous physiological responses in ci:ca from week-scale phenotypic responses in χ(optimal), and to separate minute-scale physiological responses in stomatal conductance from annual-scale phenotypic responses in gsmax.</p><p><strong>Conclusions: </strong>We highlight an opportunity to constrain leaf trait dynamics in EEO-based models based on physiological, phenotypical and evolutionary response mechanisms.</p>","PeriodicalId":8023,"journal":{"name":"Annals of botany","volume":" ","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Temporal constraints on leaf-level trait plasticity for next-generation land surface models.\",\"authors\":\"A Odé, N G Smith, K T Rebel, H J de Boer\",\"doi\":\"10.1093/aob/mcaf045\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background and aims: </strong>Dynamic global vegetation models (DGVMs) are essential for quantifying the role of terrestrial ecosystems in the Earth's climate system, but struggle with uncertainty and complexity. Eco-evolutionary optimality (EEO) theory provides a promising approach to improve DGVMs based on the premise that leaf carbon gain is optimized with resource costs. However, the timescales at which plant traits can adjust to environmental changes are not yet systematically incorporated in EEO-based models. Our aims were to identify temporal constraints on key leaf photosynthetic and leaf functional traits, and develop a conceptual framework for incorporation of temporal leaf trait dynamics in EEO-based models.</p><p><strong>Methods: </strong>We reviewed scientific literature on temporal responses of leaf traits associated with stomata and hydraulics, photosynthetic biochemistry, and morphology and lifespan. Subsequent response times were categorized from fast to slow considering physiological, phenotypical (acclimation), and evolutionary (adaptation) mechanisms. We constructed a conceptual framework including several key leaf traits identified from the literature review. We considered temporal separation of dynamics in the leaf interior to atmospheric CO2 concentration (ci:ca) from the optimal ci:ca ratio χ(optimal), and dynamics in stomatal conductance within the constraint of the anatomical maximum stomatal conductance (gsmax). A proof-of-concept was provided by modelling temporally-separated responses in these trait combinations to CO2 and humidity.</p><p><strong>Key results: </strong>We identified 15 leaf traits crucial for EEO-based modelling and determined their response mechanisms and timescales. Physiological and phenotypical response mechanisms were considered most relevant for modelling EEO-based trait dynamics, while evolutionary constraints limit response ranges. Our conceptual framework demonstrated an approach to separate near-instantaneous physiological responses in ci:ca from week-scale phenotypic responses in χ(optimal), and to separate minute-scale physiological responses in stomatal conductance from annual-scale phenotypic responses in gsmax.</p><p><strong>Conclusions: </strong>We highlight an opportunity to constrain leaf trait dynamics in EEO-based models based on physiological, phenotypical and evolutionary response mechanisms.</p>\",\"PeriodicalId\":8023,\"journal\":{\"name\":\"Annals of botany\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2025-03-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of botany\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/aob/mcaf045\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of botany","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/aob/mcaf045","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

背景与目的:动态全球植被模型(dgvm)对于量化陆地生态系统在地球气候系统中的作用至关重要,但存在不确定性和复杂性。生态进化最优性(EEO)理论基于叶片碳增益随资源成本而优化的前提,为提高dgvm提供了一种有希望的方法。然而,植物性状适应环境变化的时间尺度尚未被系统地纳入基于eeo的模型中。我们的目标是确定关键叶片光合和叶片功能性状的时间限制,并开发一个概念框架,将叶片性状的时间动态纳入基于eeo的模型中。方法:回顾了叶片气孔和水力、光合生物化学、形态和寿命等性状的时间响应。考虑到生理、表型(驯化)和进化(适应)机制,随后的反应时间从快到慢进行分类。我们构建了一个概念框架,包括从文献综述中确定的几个关键叶片性状。我们考虑了叶片内部动态与大气CO2浓度(ci:ca)的时间分离(最佳ci:ca比值χ),以及气孔导度在解剖最大气孔导度(gsmax)的约束下的动态。通过模拟这些性状组合对二氧化碳和湿度的暂时分离响应,提供了概念验证。主要结果:我们确定了15个叶片性状对基于eeo的建模至关重要,并确定了它们的响应机制和时间尺度。生理和表型反应机制被认为与基于eeo的性状动力学建模最相关,而进化约束限制了反应范围。我们的概念框架展示了一种方法,可以将ci:ca中的近瞬时生理反应与χ(最佳)中的周尺度表型反应分开,并将gsmax中的气孔导度的分钟尺度生理反应与年尺度表型反应分开。结论:我们强调了在基于生理、表型和进化反应机制的eeo模型中约束叶片性状动态的机会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Temporal constraints on leaf-level trait plasticity for next-generation land surface models.

Background and aims: Dynamic global vegetation models (DGVMs) are essential for quantifying the role of terrestrial ecosystems in the Earth's climate system, but struggle with uncertainty and complexity. Eco-evolutionary optimality (EEO) theory provides a promising approach to improve DGVMs based on the premise that leaf carbon gain is optimized with resource costs. However, the timescales at which plant traits can adjust to environmental changes are not yet systematically incorporated in EEO-based models. Our aims were to identify temporal constraints on key leaf photosynthetic and leaf functional traits, and develop a conceptual framework for incorporation of temporal leaf trait dynamics in EEO-based models.

Methods: We reviewed scientific literature on temporal responses of leaf traits associated with stomata and hydraulics, photosynthetic biochemistry, and morphology and lifespan. Subsequent response times were categorized from fast to slow considering physiological, phenotypical (acclimation), and evolutionary (adaptation) mechanisms. We constructed a conceptual framework including several key leaf traits identified from the literature review. We considered temporal separation of dynamics in the leaf interior to atmospheric CO2 concentration (ci:ca) from the optimal ci:ca ratio χ(optimal), and dynamics in stomatal conductance within the constraint of the anatomical maximum stomatal conductance (gsmax). A proof-of-concept was provided by modelling temporally-separated responses in these trait combinations to CO2 and humidity.

Key results: We identified 15 leaf traits crucial for EEO-based modelling and determined their response mechanisms and timescales. Physiological and phenotypical response mechanisms were considered most relevant for modelling EEO-based trait dynamics, while evolutionary constraints limit response ranges. Our conceptual framework demonstrated an approach to separate near-instantaneous physiological responses in ci:ca from week-scale phenotypic responses in χ(optimal), and to separate minute-scale physiological responses in stomatal conductance from annual-scale phenotypic responses in gsmax.

Conclusions: We highlight an opportunity to constrain leaf trait dynamics in EEO-based models based on physiological, phenotypical and evolutionary response mechanisms.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annals of botany
Annals of botany 生物-植物科学
CiteScore
7.90
自引率
4.80%
发文量
138
审稿时长
3 months
期刊介绍: Annals of Botany is an international plant science journal publishing novel and rigorous research in all areas of plant science. It is published monthly in both electronic and printed forms with at least two extra issues each year that focus on a particular theme in plant biology. The Journal is managed by the Annals of Botany Company, a not-for-profit educational charity established to promote plant science worldwide. The Journal publishes original research papers, invited and submitted review articles, ''Research in Context'' expanding on original work, ''Botanical Briefings'' as short overviews of important topics, and ''Viewpoints'' giving opinions. All papers in each issue are summarized briefly in Content Snapshots , there are topical news items in the Plant Cuttings section and Book Reviews . A rigorous review process ensures that readers are exposed to genuine and novel advances across a wide spectrum of botanical knowledge. All papers aim to advance knowledge and make a difference to our understanding of plant science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信