模拟大块单晶的生长:看到隐藏的东西。

IF 7.6 2区 工程技术 Q1 CHEMISTRY, APPLIED
Jeffrey J Derby
{"title":"模拟大块单晶的生长:看到隐藏的东西。","authors":"Jeffrey J Derby","doi":"10.1146/annurev-chembioeng-082223-110559","DOIUrl":null,"url":null,"abstract":"<p><p>Modeling is an indispensable tool for understanding and improving the growth of bulk, single crystals. Such crystals are required for the fabrication of the electronic and photonic devices that enable information technology, communications, sensing, solid-state lighting, solar energy production, and many other applications. These materials are much more than simply very pure, specialty chemicals. They must meet strict requirements for solid-state structural perfection and must be produced with high yields and low costs. Successful manufacturing techniques have been developed that utilize thermodynamic phase change to solidify a high-temperature melt into a crystal of high quality. However, harsh conditions and batch operation limit both diagnostic measurements and data available to connect growth conditions to outcomes, making modeling even more important for process improvement. Challenges and opportunities are discussed for melt crystal growth processes, with research examples that demonstrate how modeling has provided important insight into crystal-melt interface shape, dopant segregation, morphological instability, and defect formation.</p>","PeriodicalId":8234,"journal":{"name":"Annual review of chemical and biomolecular engineering","volume":" ","pages":""},"PeriodicalIF":7.6000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modeling the Growth of Bulk, Single Crystals: Seeing What Is Hidden.\",\"authors\":\"Jeffrey J Derby\",\"doi\":\"10.1146/annurev-chembioeng-082223-110559\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Modeling is an indispensable tool for understanding and improving the growth of bulk, single crystals. Such crystals are required for the fabrication of the electronic and photonic devices that enable information technology, communications, sensing, solid-state lighting, solar energy production, and many other applications. These materials are much more than simply very pure, specialty chemicals. They must meet strict requirements for solid-state structural perfection and must be produced with high yields and low costs. Successful manufacturing techniques have been developed that utilize thermodynamic phase change to solidify a high-temperature melt into a crystal of high quality. However, harsh conditions and batch operation limit both diagnostic measurements and data available to connect growth conditions to outcomes, making modeling even more important for process improvement. Challenges and opportunities are discussed for melt crystal growth processes, with research examples that demonstrate how modeling has provided important insight into crystal-melt interface shape, dopant segregation, morphological instability, and defect formation.</p>\",\"PeriodicalId\":8234,\"journal\":{\"name\":\"Annual review of chemical and biomolecular engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":7.6000,\"publicationDate\":\"2025-03-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual review of chemical and biomolecular engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1146/annurev-chembioeng-082223-110559\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual review of chemical and biomolecular engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1146/annurev-chembioeng-082223-110559","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

建模是理解和改进块状单晶生长的不可缺少的工具。这种晶体是制造电子和光子器件所必需的,这些器件使信息技术、通信、传感、固态照明、太阳能生产和许多其他应用成为可能。这些材料不仅仅是非常纯净的特种化学品。它们必须满足固态结构完美的严格要求,并且必须以高产量和低成本生产。利用热力学相变将高温熔体固化成高质量晶体的成功制造技术已经开发出来。然而,恶劣的条件和批量操作限制了将生长条件与结果联系起来的诊断测量和数据,这使得建模对于过程改进更加重要。讨论了熔体晶体生长过程的挑战和机遇,并举例说明了建模如何为晶体-熔体界面形状、掺杂剂偏析、形态不稳定性和缺陷形成提供了重要的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modeling the Growth of Bulk, Single Crystals: Seeing What Is Hidden.

Modeling is an indispensable tool for understanding and improving the growth of bulk, single crystals. Such crystals are required for the fabrication of the electronic and photonic devices that enable information technology, communications, sensing, solid-state lighting, solar energy production, and many other applications. These materials are much more than simply very pure, specialty chemicals. They must meet strict requirements for solid-state structural perfection and must be produced with high yields and low costs. Successful manufacturing techniques have been developed that utilize thermodynamic phase change to solidify a high-temperature melt into a crystal of high quality. However, harsh conditions and batch operation limit both diagnostic measurements and data available to connect growth conditions to outcomes, making modeling even more important for process improvement. Challenges and opportunities are discussed for melt crystal growth processes, with research examples that demonstrate how modeling has provided important insight into crystal-melt interface shape, dopant segregation, morphological instability, and defect formation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annual review of chemical and biomolecular engineering
Annual review of chemical and biomolecular engineering CHEMISTRY, APPLIED-ENGINEERING, CHEMICAL
CiteScore
16.00
自引率
0.00%
发文量
25
期刊介绍: The Annual Review of Chemical and Biomolecular Engineering aims to provide a perspective on the broad field of chemical (and related) engineering. The journal draws from disciplines as diverse as biology, physics, and engineering, with development of chemical products and processes as the unifying theme.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信