{"title":"模拟大块单晶的生长:看到隐藏的东西。","authors":"Jeffrey J Derby","doi":"10.1146/annurev-chembioeng-082223-110559","DOIUrl":null,"url":null,"abstract":"<p><p>Modeling is an indispensable tool for understanding and improving the growth of bulk, single crystals. Such crystals are required for the fabrication of the electronic and photonic devices that enable information technology, communications, sensing, solid-state lighting, solar energy production, and many other applications. These materials are much more than simply very pure, specialty chemicals. They must meet strict requirements for solid-state structural perfection and must be produced with high yields and low costs. Successful manufacturing techniques have been developed that utilize thermodynamic phase change to solidify a high-temperature melt into a crystal of high quality. However, harsh conditions and batch operation limit both diagnostic measurements and data available to connect growth conditions to outcomes, making modeling even more important for process improvement. Challenges and opportunities are discussed for melt crystal growth processes, with research examples that demonstrate how modeling has provided important insight into crystal-melt interface shape, dopant segregation, morphological instability, and defect formation.</p>","PeriodicalId":8234,"journal":{"name":"Annual review of chemical and biomolecular engineering","volume":" ","pages":""},"PeriodicalIF":7.6000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modeling the Growth of Bulk, Single Crystals: Seeing What Is Hidden.\",\"authors\":\"Jeffrey J Derby\",\"doi\":\"10.1146/annurev-chembioeng-082223-110559\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Modeling is an indispensable tool for understanding and improving the growth of bulk, single crystals. Such crystals are required for the fabrication of the electronic and photonic devices that enable information technology, communications, sensing, solid-state lighting, solar energy production, and many other applications. These materials are much more than simply very pure, specialty chemicals. They must meet strict requirements for solid-state structural perfection and must be produced with high yields and low costs. Successful manufacturing techniques have been developed that utilize thermodynamic phase change to solidify a high-temperature melt into a crystal of high quality. However, harsh conditions and batch operation limit both diagnostic measurements and data available to connect growth conditions to outcomes, making modeling even more important for process improvement. Challenges and opportunities are discussed for melt crystal growth processes, with research examples that demonstrate how modeling has provided important insight into crystal-melt interface shape, dopant segregation, morphological instability, and defect formation.</p>\",\"PeriodicalId\":8234,\"journal\":{\"name\":\"Annual review of chemical and biomolecular engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":7.6000,\"publicationDate\":\"2025-03-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual review of chemical and biomolecular engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1146/annurev-chembioeng-082223-110559\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual review of chemical and biomolecular engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1146/annurev-chembioeng-082223-110559","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
Modeling the Growth of Bulk, Single Crystals: Seeing What Is Hidden.
Modeling is an indispensable tool for understanding and improving the growth of bulk, single crystals. Such crystals are required for the fabrication of the electronic and photonic devices that enable information technology, communications, sensing, solid-state lighting, solar energy production, and many other applications. These materials are much more than simply very pure, specialty chemicals. They must meet strict requirements for solid-state structural perfection and must be produced with high yields and low costs. Successful manufacturing techniques have been developed that utilize thermodynamic phase change to solidify a high-temperature melt into a crystal of high quality. However, harsh conditions and batch operation limit both diagnostic measurements and data available to connect growth conditions to outcomes, making modeling even more important for process improvement. Challenges and opportunities are discussed for melt crystal growth processes, with research examples that demonstrate how modeling has provided important insight into crystal-melt interface shape, dopant segregation, morphological instability, and defect formation.
期刊介绍:
The Annual Review of Chemical and Biomolecular Engineering aims to provide a perspective on the broad field of chemical (and related) engineering. The journal draws from disciplines as diverse as biology, physics, and engineering, with development of chemical products and processes as the unifying theme.