Xiaoyu Yang , Zhichun Bi , Jie Li , Le Wang , Hui Huang , Yongxin Li
{"title":"结合智能手机APP的纸质比色传感器阵列用于茶多酚和龙井茶的鉴别。","authors":"Xiaoyu Yang , Zhichun Bi , Jie Li , Le Wang , Hui Huang , Yongxin Li","doi":"10.1016/j.bios.2025.117391","DOIUrl":null,"url":null,"abstract":"<div><div>West Lake Longjing tea is among the top ten renowned teas in China. However, consumers often struggle to accurately identify genuine West Lake Longjing tea through visual inspection, leading to widespread counterfeiting and fraud in the market. The aim of this work is to develop a real-time detection tool for consumers, including a visual color-changing test paper and an accompanying mobile phone recognition application. The mobile application has been developed for the purpose of facilitating rapid identification of the provenance of Longjing tea. Firstly, we used the polyphenol oxidase-like activity and the peroxidase-like activity of nanozymes to construct the sensor array, and found that tea polyphenols and Longjing tea had different responses to the sensor array. Then combined with LDA and HCA algorithms, the identification of tea polyphenols and the differentiation of Longjing production area were realized. The results showed that as low as 1 μM of seven tea polyphenols could be efficiently recognized, and Longjing green tea from six production regions could be differentiated from West Lake Longjing adulterated with different proportions of other production regions. In addition, we developed a paper-based sensor array and a smartphone APP to distinguish multiple concentrations of tea polyphenols and Longjing from different production areas by recognizing the color difference of the paper. The construction of this sensor array and the development of smartphone APP can be successfully applied to the source identification and the adulteration of Longjing tea.</div></div>","PeriodicalId":259,"journal":{"name":"Biosensors and Bioelectronics","volume":"278 ","pages":"Article 117391"},"PeriodicalIF":10.5000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Paper-based colorimetric sensor array integrated with smartphone APP for the identification of tea polyphenol and Longjing tea\",\"authors\":\"Xiaoyu Yang , Zhichun Bi , Jie Li , Le Wang , Hui Huang , Yongxin Li\",\"doi\":\"10.1016/j.bios.2025.117391\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>West Lake Longjing tea is among the top ten renowned teas in China. However, consumers often struggle to accurately identify genuine West Lake Longjing tea through visual inspection, leading to widespread counterfeiting and fraud in the market. The aim of this work is to develop a real-time detection tool for consumers, including a visual color-changing test paper and an accompanying mobile phone recognition application. The mobile application has been developed for the purpose of facilitating rapid identification of the provenance of Longjing tea. Firstly, we used the polyphenol oxidase-like activity and the peroxidase-like activity of nanozymes to construct the sensor array, and found that tea polyphenols and Longjing tea had different responses to the sensor array. Then combined with LDA and HCA algorithms, the identification of tea polyphenols and the differentiation of Longjing production area were realized. The results showed that as low as 1 μM of seven tea polyphenols could be efficiently recognized, and Longjing green tea from six production regions could be differentiated from West Lake Longjing adulterated with different proportions of other production regions. In addition, we developed a paper-based sensor array and a smartphone APP to distinguish multiple concentrations of tea polyphenols and Longjing from different production areas by recognizing the color difference of the paper. The construction of this sensor array and the development of smartphone APP can be successfully applied to the source identification and the adulteration of Longjing tea.</div></div>\",\"PeriodicalId\":259,\"journal\":{\"name\":\"Biosensors and Bioelectronics\",\"volume\":\"278 \",\"pages\":\"Article 117391\"},\"PeriodicalIF\":10.5000,\"publicationDate\":\"2025-03-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biosensors and Bioelectronics\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0956566325002659\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosensors and Bioelectronics","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0956566325002659","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOPHYSICS","Score":null,"Total":0}
Paper-based colorimetric sensor array integrated with smartphone APP for the identification of tea polyphenol and Longjing tea
West Lake Longjing tea is among the top ten renowned teas in China. However, consumers often struggle to accurately identify genuine West Lake Longjing tea through visual inspection, leading to widespread counterfeiting and fraud in the market. The aim of this work is to develop a real-time detection tool for consumers, including a visual color-changing test paper and an accompanying mobile phone recognition application. The mobile application has been developed for the purpose of facilitating rapid identification of the provenance of Longjing tea. Firstly, we used the polyphenol oxidase-like activity and the peroxidase-like activity of nanozymes to construct the sensor array, and found that tea polyphenols and Longjing tea had different responses to the sensor array. Then combined with LDA and HCA algorithms, the identification of tea polyphenols and the differentiation of Longjing production area were realized. The results showed that as low as 1 μM of seven tea polyphenols could be efficiently recognized, and Longjing green tea from six production regions could be differentiated from West Lake Longjing adulterated with different proportions of other production regions. In addition, we developed a paper-based sensor array and a smartphone APP to distinguish multiple concentrations of tea polyphenols and Longjing from different production areas by recognizing the color difference of the paper. The construction of this sensor array and the development of smartphone APP can be successfully applied to the source identification and the adulteration of Longjing tea.
期刊介绍:
Biosensors & Bioelectronics, along with its open access companion journal Biosensors & Bioelectronics: X, is the leading international publication in the field of biosensors and bioelectronics. It covers research, design, development, and application of biosensors, which are analytical devices incorporating biological materials with physicochemical transducers. These devices, including sensors, DNA chips, electronic noses, and lab-on-a-chip, produce digital signals proportional to specific analytes. Examples include immunosensors and enzyme-based biosensors, applied in various fields such as medicine, environmental monitoring, and food industry. The journal also focuses on molecular and supramolecular structures for enhancing device performance.