雪花状cu20 - pt纳米团簇介导的Fenton光热和化学动力治疗抗生素伤口愈合。

IF 5.8 3区 医学 Q1 MATERIALS SCIENCE, BIOMATERIALS
En Li, Qi Han, Ting Chen, Si Cheng and Jinghua Li
{"title":"雪花状cu20 - pt纳米团簇介导的Fenton光热和化学动力治疗抗生素伤口愈合。","authors":"En Li, Qi Han, Ting Chen, Si Cheng and Jinghua Li","doi":"10.1039/D5BM00096C","DOIUrl":null,"url":null,"abstract":"<p >The Fenton reaction serves as the fundamental mechanism behind chemodynamic therapy (CDT), wherein highly reactive hydroxyl radicals (˙OH) are produced to efficiently induce bacterial cell death. On the other hand, photothermal therapy (PTT) utilizes photosensitizers to absorb specific wavelengths of light, generating localized heat that disrupts bacterial cell membranes, leading to bactericidal effects. In this study, platinum nanoparticles (PtNPs) were successfully doped onto the surface of hexapodal cuprous oxide (HCu<small><sub>2</sub></small>O), resulting in the synthesis of hexapodal snowflake-like Cu<small><sub>2</sub></small>O–Pt nanoparticles (HCPNLs). These HCPNLs synergistically combine the mechanisms of CDT and PTT, significantly enhancing antibacterial efficacy. <em>In vitro</em> antimicrobial experiments have demonstrated that HCPNLs exhibit strong antimicrobial activity against both Gram-positive <em>Staphylococcus aureus</em> (<em>S. aureus</em>) and Gram-negative <em>Escherichia coli</em> (<em>E. coli</em>). Additionally, HCPNLs effectively disrupted biofilm formation and improved tissue penetration. In a murine model of mixed bacterial infection, HCPNLs showed excellent synergistic antimicrobial effects, significantly promoting wound healing with minimal toxicity. Overall, the unique properties of HCPNLs provide a novel option for non-resistant antimicrobial therapy in biomedical applications.</p>","PeriodicalId":65,"journal":{"name":"Biomaterials Science","volume":" 9","pages":" 2394-2409"},"PeriodicalIF":5.8000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Snowflake-like Cu2O–Pt nanocluster-mediated Fenton photothermal and chemodynamic therapy for antibiotic wound healing†\",\"authors\":\"En Li, Qi Han, Ting Chen, Si Cheng and Jinghua Li\",\"doi\":\"10.1039/D5BM00096C\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The Fenton reaction serves as the fundamental mechanism behind chemodynamic therapy (CDT), wherein highly reactive hydroxyl radicals (˙OH) are produced to efficiently induce bacterial cell death. On the other hand, photothermal therapy (PTT) utilizes photosensitizers to absorb specific wavelengths of light, generating localized heat that disrupts bacterial cell membranes, leading to bactericidal effects. In this study, platinum nanoparticles (PtNPs) were successfully doped onto the surface of hexapodal cuprous oxide (HCu<small><sub>2</sub></small>O), resulting in the synthesis of hexapodal snowflake-like Cu<small><sub>2</sub></small>O–Pt nanoparticles (HCPNLs). These HCPNLs synergistically combine the mechanisms of CDT and PTT, significantly enhancing antibacterial efficacy. <em>In vitro</em> antimicrobial experiments have demonstrated that HCPNLs exhibit strong antimicrobial activity against both Gram-positive <em>Staphylococcus aureus</em> (<em>S. aureus</em>) and Gram-negative <em>Escherichia coli</em> (<em>E. coli</em>). Additionally, HCPNLs effectively disrupted biofilm formation and improved tissue penetration. In a murine model of mixed bacterial infection, HCPNLs showed excellent synergistic antimicrobial effects, significantly promoting wound healing with minimal toxicity. Overall, the unique properties of HCPNLs provide a novel option for non-resistant antimicrobial therapy in biomedical applications.</p>\",\"PeriodicalId\":65,\"journal\":{\"name\":\"Biomaterials Science\",\"volume\":\" 9\",\"pages\":\" 2394-2409\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2025-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomaterials Science\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/bm/d5bm00096c\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomaterials Science","FirstCategoryId":"5","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/bm/d5bm00096c","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

芬顿反应是化学动力学治疗(CDT)背后的基本机制,其中产生高活性羟基自由基(˙OH)以有效诱导细菌细胞死亡。另一方面,光热疗法(PTT)利用光敏剂吸收特定波长的光,产生局部热,破坏细菌细胞膜,导致杀菌效果。本研究将铂纳米粒子(PtNPs)成功掺杂到六足体氧化亚铜(HCu2O)表面,合成了六足体雪花状Cu2O-Pt纳米粒子(HCPNLs)。这些hcpnl协同CDT和PTT的作用机制,显著增强抗菌效果。体外抗菌实验表明,hcpnl对革兰氏阳性金黄色葡萄球菌(S. aureus)和革兰氏阴性大肠杆菌(E. coli)均表现出较强的抗菌活性。此外,hcpnl有效地破坏了生物膜的形成并改善了组织的渗透。在小鼠混合细菌感染模型中,HCPNLs显示出优异的协同抗菌作用,显著促进伤口愈合,毒性最小。总体而言,hcpnl的独特性质为生物医学应用中的非耐药抗菌治疗提供了新的选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Snowflake-like Cu2O–Pt nanocluster-mediated Fenton photothermal and chemodynamic therapy for antibiotic wound healing†

The Fenton reaction serves as the fundamental mechanism behind chemodynamic therapy (CDT), wherein highly reactive hydroxyl radicals (˙OH) are produced to efficiently induce bacterial cell death. On the other hand, photothermal therapy (PTT) utilizes photosensitizers to absorb specific wavelengths of light, generating localized heat that disrupts bacterial cell membranes, leading to bactericidal effects. In this study, platinum nanoparticles (PtNPs) were successfully doped onto the surface of hexapodal cuprous oxide (HCu2O), resulting in the synthesis of hexapodal snowflake-like Cu2O–Pt nanoparticles (HCPNLs). These HCPNLs synergistically combine the mechanisms of CDT and PTT, significantly enhancing antibacterial efficacy. In vitro antimicrobial experiments have demonstrated that HCPNLs exhibit strong antimicrobial activity against both Gram-positive Staphylococcus aureus (S. aureus) and Gram-negative Escherichia coli (E. coli). Additionally, HCPNLs effectively disrupted biofilm formation and improved tissue penetration. In a murine model of mixed bacterial infection, HCPNLs showed excellent synergistic antimicrobial effects, significantly promoting wound healing with minimal toxicity. Overall, the unique properties of HCPNLs provide a novel option for non-resistant antimicrobial therapy in biomedical applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biomaterials Science
Biomaterials Science MATERIALS SCIENCE, BIOMATERIALS-
CiteScore
11.50
自引率
4.50%
发文量
556
期刊介绍: Biomaterials Science is an international high impact journal exploring the science of biomaterials and their translation towards clinical use. Its scope encompasses new concepts in biomaterials design, studies into the interaction of biomaterials with the body, and the use of materials to answer fundamental biological questions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信