{"title":"四维三次nls型系统径向对称解的爆破","authors":"Maicon Hespanha, Ademir Pastor","doi":"10.1111/sapm.70044","DOIUrl":null,"url":null,"abstract":"<p>This paper is concerned with a cubic nonlinear Schrödinger system modeling the interaction between an optical beam and its third harmonic in a material with Kerr-type nonlinear response. We are mainly interested in the so-called energy-critical case, that is, in dimension four. Our main result states that radially symmetric solutions with initial energy below that of the ground states but with kinetic energy above that of the ground states must blow up in finite time. The proof of this result is based on the convexity method. As an independent interest we also establish the existence of ground state solutions, that is, solutions that minimize some action functional. In order to obtain our existence results, we use the concentration–compactness method combined with variational arguments. As a byproduct, we also obtain the best constant in a vector-critical Sobolev-type inequality.</p>","PeriodicalId":51174,"journal":{"name":"Studies in Applied Mathematics","volume":"154 3","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Blow-Up of Radially Symmetric Solutions for a Cubic NLS-Type System in Dimension 4\",\"authors\":\"Maicon Hespanha, Ademir Pastor\",\"doi\":\"10.1111/sapm.70044\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper is concerned with a cubic nonlinear Schrödinger system modeling the interaction between an optical beam and its third harmonic in a material with Kerr-type nonlinear response. We are mainly interested in the so-called energy-critical case, that is, in dimension four. Our main result states that radially symmetric solutions with initial energy below that of the ground states but with kinetic energy above that of the ground states must blow up in finite time. The proof of this result is based on the convexity method. As an independent interest we also establish the existence of ground state solutions, that is, solutions that minimize some action functional. In order to obtain our existence results, we use the concentration–compactness method combined with variational arguments. As a byproduct, we also obtain the best constant in a vector-critical Sobolev-type inequality.</p>\",\"PeriodicalId\":51174,\"journal\":{\"name\":\"Studies in Applied Mathematics\",\"volume\":\"154 3\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-03-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Studies in Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/sapm.70044\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studies in Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/sapm.70044","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Blow-Up of Radially Symmetric Solutions for a Cubic NLS-Type System in Dimension 4
This paper is concerned with a cubic nonlinear Schrödinger system modeling the interaction between an optical beam and its third harmonic in a material with Kerr-type nonlinear response. We are mainly interested in the so-called energy-critical case, that is, in dimension four. Our main result states that radially symmetric solutions with initial energy below that of the ground states but with kinetic energy above that of the ground states must blow up in finite time. The proof of this result is based on the convexity method. As an independent interest we also establish the existence of ground state solutions, that is, solutions that minimize some action functional. In order to obtain our existence results, we use the concentration–compactness method combined with variational arguments. As a byproduct, we also obtain the best constant in a vector-critical Sobolev-type inequality.
期刊介绍:
Studies in Applied Mathematics explores the interplay between mathematics and the applied disciplines. It publishes papers that advance the understanding of physical processes, or develop new mathematical techniques applicable to physical and real-world problems. Its main themes include (but are not limited to) nonlinear phenomena, mathematical modeling, integrable systems, asymptotic analysis, inverse problems, numerical analysis, dynamical systems, scientific computing and applications to areas such as fluid mechanics, mathematical biology, and optics.