Xuefen Xu, Wei Li, Ya Zhou, Meihui Wang, Shufan Ji, Siwei Xia, Yang Li, Xiaohan Guo, Sheng Huan, Feixia Wang, Feng Zhang, Haibo Cheng, Guoping Yin, Shizhong Zheng
{"title":"异连体肌氨酸诱导ubqln1介导的PGC1α稳定性克服缺氧诱导的肝癌细胞抵抗","authors":"Xuefen Xu, Wei Li, Ya Zhou, Meihui Wang, Shufan Ji, Siwei Xia, Yang Li, Xiaohan Guo, Sheng Huan, Feixia Wang, Feng Zhang, Haibo Cheng, Guoping Yin, Shizhong Zheng","doi":"10.1002/biof.70008","DOIUrl":null,"url":null,"abstract":"<p>Hypoxia is a key reason for the failure of liver cancer therapy. Emerging evidences indicated that ROS played a crucial role in the sorafenib therapy, and overcoming the reduction in intracellular ROS levels was the first requirement for therapy resistance. Ubiquilin1 (UBQLN1) acted as an oncogene or suppressor gene involved in the protein degradation and abnormal protein aggregation. In this study, we proposed a novel strategy to reverse the hypoxia-induced resistance in liver cancer by isoliensinine (Iso), a significant bioactive compound derived from lotus seed. Based on preliminary screening, we found a significant elevation of UBQLN1 in liver cancer tissues obtained from the TCGA databases and in liver cancer cells under hypoxic model, which contributed to hypoxia-induced sorafenib resistance. Further data suggested that Iso significantly reversed the hypoxia-induced sorafenib resistance through directly targeting UBQLN1 and inducing ROS production. Notably, the ROS elevation induced by Iso could trigger IRP2-induced ferroptosis but remained below the threshold for mitochondrial damage in liver cancer cells. The related mechanism was that Iso reduced the binding between PGC1α and ubiquitin, promoting the stability of the PGC1α protein, which might accelerate mitochondrial energy metabolism. Taken together, our findings not only revealed that UBQLN1 played a critical role in ROS regulation, but also uncovered a previously unrecognized reversal mechanism of Iso in liver cancer, which promoted sensitization of sorafenib-induced ferroptosis by inhibition of UBQLN1/PGC1α pathway under hypoxia.</p>","PeriodicalId":8923,"journal":{"name":"BioFactors","volume":"51 2","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Induction of UBQLN1-mediated PGC1α stability by isoliensinine overcame hypoxia-induced resistance in liver cancer cells\",\"authors\":\"Xuefen Xu, Wei Li, Ya Zhou, Meihui Wang, Shufan Ji, Siwei Xia, Yang Li, Xiaohan Guo, Sheng Huan, Feixia Wang, Feng Zhang, Haibo Cheng, Guoping Yin, Shizhong Zheng\",\"doi\":\"10.1002/biof.70008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Hypoxia is a key reason for the failure of liver cancer therapy. Emerging evidences indicated that ROS played a crucial role in the sorafenib therapy, and overcoming the reduction in intracellular ROS levels was the first requirement for therapy resistance. Ubiquilin1 (UBQLN1) acted as an oncogene or suppressor gene involved in the protein degradation and abnormal protein aggregation. In this study, we proposed a novel strategy to reverse the hypoxia-induced resistance in liver cancer by isoliensinine (Iso), a significant bioactive compound derived from lotus seed. Based on preliminary screening, we found a significant elevation of UBQLN1 in liver cancer tissues obtained from the TCGA databases and in liver cancer cells under hypoxic model, which contributed to hypoxia-induced sorafenib resistance. Further data suggested that Iso significantly reversed the hypoxia-induced sorafenib resistance through directly targeting UBQLN1 and inducing ROS production. Notably, the ROS elevation induced by Iso could trigger IRP2-induced ferroptosis but remained below the threshold for mitochondrial damage in liver cancer cells. The related mechanism was that Iso reduced the binding between PGC1α and ubiquitin, promoting the stability of the PGC1α protein, which might accelerate mitochondrial energy metabolism. Taken together, our findings not only revealed that UBQLN1 played a critical role in ROS regulation, but also uncovered a previously unrecognized reversal mechanism of Iso in liver cancer, which promoted sensitization of sorafenib-induced ferroptosis by inhibition of UBQLN1/PGC1α pathway under hypoxia.</p>\",\"PeriodicalId\":8923,\"journal\":{\"name\":\"BioFactors\",\"volume\":\"51 2\",\"pages\":\"\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2025-03-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BioFactors\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/biof.70008\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BioFactors","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/biof.70008","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Induction of UBQLN1-mediated PGC1α stability by isoliensinine overcame hypoxia-induced resistance in liver cancer cells
Hypoxia is a key reason for the failure of liver cancer therapy. Emerging evidences indicated that ROS played a crucial role in the sorafenib therapy, and overcoming the reduction in intracellular ROS levels was the first requirement for therapy resistance. Ubiquilin1 (UBQLN1) acted as an oncogene or suppressor gene involved in the protein degradation and abnormal protein aggregation. In this study, we proposed a novel strategy to reverse the hypoxia-induced resistance in liver cancer by isoliensinine (Iso), a significant bioactive compound derived from lotus seed. Based on preliminary screening, we found a significant elevation of UBQLN1 in liver cancer tissues obtained from the TCGA databases and in liver cancer cells under hypoxic model, which contributed to hypoxia-induced sorafenib resistance. Further data suggested that Iso significantly reversed the hypoxia-induced sorafenib resistance through directly targeting UBQLN1 and inducing ROS production. Notably, the ROS elevation induced by Iso could trigger IRP2-induced ferroptosis but remained below the threshold for mitochondrial damage in liver cancer cells. The related mechanism was that Iso reduced the binding between PGC1α and ubiquitin, promoting the stability of the PGC1α protein, which might accelerate mitochondrial energy metabolism. Taken together, our findings not only revealed that UBQLN1 played a critical role in ROS regulation, but also uncovered a previously unrecognized reversal mechanism of Iso in liver cancer, which promoted sensitization of sorafenib-induced ferroptosis by inhibition of UBQLN1/PGC1α pathway under hypoxia.
期刊介绍:
BioFactors, a journal of the International Union of Biochemistry and Molecular Biology, is devoted to the rapid publication of highly significant original research articles and reviews in experimental biology in health and disease.
The word “biofactors” refers to the many compounds that regulate biological functions. Biological factors comprise many molecules produced or modified by living organisms, and present in many essential systems like the blood, the nervous or immunological systems. A non-exhaustive list of biological factors includes neurotransmitters, cytokines, chemokines, hormones, coagulation factors, transcription factors, signaling molecules, receptor ligands and many more. In the group of biofactors we can accommodate several classical molecules not synthetized in the body such as vitamins, micronutrients or essential trace elements.
In keeping with this unified view of biochemistry, BioFactors publishes research dealing with the identification of new substances and the elucidation of their functions at the biophysical, biochemical, cellular and human level as well as studies revealing novel functions of already known biofactors. The journal encourages the submission of studies that use biochemistry, biophysics, cell and molecular biology and/or cell signaling approaches.