{"title":"在表达gli1的细胞中消耗yes相关蛋白可减轻腹膜透析诱导的腹膜纤维化","authors":"Chia-Lin Wu, Jhih-Wen Hsu, Ya-Chi Chan, Jenn-Yah Yu, Yi-Liang Tsai, Der-Cherng Tarng","doi":"10.1111/jcmm.70516","DOIUrl":null,"url":null,"abstract":"<p>Long-term peritoneal dialysis (PD) leads to peritoneal damage and chronic inflammation, resulting in peritoneal fibrosis (PF). Emerging evidence suggests that yes-associated protein (YAP) is a key player in fibrogenesis across various organs. However, its role in PD-induced PF remains unclear. We used NIH/3T3 cells, primary mouse fibroblasts, and conditional YAP knockout (CKO) mice with glioma-associated oncogene 1 (<i>Gli1</i>)-specific YAP deletion. The effects of YAP knockdown and verteporfin, a YAP inhibitor, on fibroblast-to-mesenchymal transition (FMT) and angiogenesis were evaluated. Transforming growth factor-beta (TGF-β) induced YAP expression and promoted fibroblast-to-myofibroblast transition (FMT) in 3T3 fibroblasts, upregulating collagen 1A1, α-smooth muscle actin (α-SMA), and connective tissue growth factor (CTGF). YAP knockdown and verteporfin treatment reduced these FMT markers and inhibited smad2/3 phosphorylation. In vivo, YAP and <i>Gli1</i>-expressing cells were upregulated in PD-induced PF. Conditional YAP knockout in <i>Gli1</i><sup>+</sup> cells and verteporfin treatment significantly reduced fibrosis and α-SMA, collagen 1, TGF-β, CTGF, and phosphorylated smad2/3 expression in the peritoneum and peritoneal angiogenesis. YAP plays a pivotal role in FMT during PD-induced PF. Conditional YAP deletion in <i>Gli1</i>-expressing cells and verteporfin treatment represent promising antifibrotic strategies for long-term PD patients.</p>","PeriodicalId":101321,"journal":{"name":"JOURNAL OF CELLULAR AND MOLECULAR MEDICINE","volume":"29 6","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jcmm.70516","citationCount":"0","resultStr":"{\"title\":\"Depleting Yes-Associated Protein in Gli1-Expressing Cells Attenuates Peritoneal Dialysis-Induced Peritoneal Fibrosis\",\"authors\":\"Chia-Lin Wu, Jhih-Wen Hsu, Ya-Chi Chan, Jenn-Yah Yu, Yi-Liang Tsai, Der-Cherng Tarng\",\"doi\":\"10.1111/jcmm.70516\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Long-term peritoneal dialysis (PD) leads to peritoneal damage and chronic inflammation, resulting in peritoneal fibrosis (PF). Emerging evidence suggests that yes-associated protein (YAP) is a key player in fibrogenesis across various organs. However, its role in PD-induced PF remains unclear. We used NIH/3T3 cells, primary mouse fibroblasts, and conditional YAP knockout (CKO) mice with glioma-associated oncogene 1 (<i>Gli1</i>)-specific YAP deletion. The effects of YAP knockdown and verteporfin, a YAP inhibitor, on fibroblast-to-mesenchymal transition (FMT) and angiogenesis were evaluated. Transforming growth factor-beta (TGF-β) induced YAP expression and promoted fibroblast-to-myofibroblast transition (FMT) in 3T3 fibroblasts, upregulating collagen 1A1, α-smooth muscle actin (α-SMA), and connective tissue growth factor (CTGF). YAP knockdown and verteporfin treatment reduced these FMT markers and inhibited smad2/3 phosphorylation. In vivo, YAP and <i>Gli1</i>-expressing cells were upregulated in PD-induced PF. Conditional YAP knockout in <i>Gli1</i><sup>+</sup> cells and verteporfin treatment significantly reduced fibrosis and α-SMA, collagen 1, TGF-β, CTGF, and phosphorylated smad2/3 expression in the peritoneum and peritoneal angiogenesis. YAP plays a pivotal role in FMT during PD-induced PF. Conditional YAP deletion in <i>Gli1</i>-expressing cells and verteporfin treatment represent promising antifibrotic strategies for long-term PD patients.</p>\",\"PeriodicalId\":101321,\"journal\":{\"name\":\"JOURNAL OF CELLULAR AND MOLECULAR MEDICINE\",\"volume\":\"29 6\",\"pages\":\"\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-03-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jcmm.70516\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JOURNAL OF CELLULAR AND MOLECULAR MEDICINE\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/jcmm.70516\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JOURNAL OF CELLULAR AND MOLECULAR MEDICINE","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jcmm.70516","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Depleting Yes-Associated Protein in Gli1-Expressing Cells Attenuates Peritoneal Dialysis-Induced Peritoneal Fibrosis
Long-term peritoneal dialysis (PD) leads to peritoneal damage and chronic inflammation, resulting in peritoneal fibrosis (PF). Emerging evidence suggests that yes-associated protein (YAP) is a key player in fibrogenesis across various organs. However, its role in PD-induced PF remains unclear. We used NIH/3T3 cells, primary mouse fibroblasts, and conditional YAP knockout (CKO) mice with glioma-associated oncogene 1 (Gli1)-specific YAP deletion. The effects of YAP knockdown and verteporfin, a YAP inhibitor, on fibroblast-to-mesenchymal transition (FMT) and angiogenesis were evaluated. Transforming growth factor-beta (TGF-β) induced YAP expression and promoted fibroblast-to-myofibroblast transition (FMT) in 3T3 fibroblasts, upregulating collagen 1A1, α-smooth muscle actin (α-SMA), and connective tissue growth factor (CTGF). YAP knockdown and verteporfin treatment reduced these FMT markers and inhibited smad2/3 phosphorylation. In vivo, YAP and Gli1-expressing cells were upregulated in PD-induced PF. Conditional YAP knockout in Gli1+ cells and verteporfin treatment significantly reduced fibrosis and α-SMA, collagen 1, TGF-β, CTGF, and phosphorylated smad2/3 expression in the peritoneum and peritoneal angiogenesis. YAP plays a pivotal role in FMT during PD-induced PF. Conditional YAP deletion in Gli1-expressing cells and verteporfin treatment represent promising antifibrotic strategies for long-term PD patients.
期刊介绍:
The Journal of Cellular and Molecular Medicine serves as a bridge between physiology and cellular medicine, as well as molecular biology and molecular therapeutics. With a 20-year history, the journal adopts an interdisciplinary approach to showcase innovative discoveries.
It publishes research aimed at advancing the collective understanding of the cellular and molecular mechanisms underlying diseases. The journal emphasizes translational studies that translate this knowledge into therapeutic strategies. Being fully open access, the journal is accessible to all readers.