Shalini Mahendran, Assoc. Prof. Dr. Noorfatimah Yahaya, Prof. Dr. Bassim H. Hameed, Prof. Dr. Dai Viet N. Vo, Dr. Abdelkader Ouakouak, Prof. Dr. Norikazu Nishiyama, Assoc. Prof. Dr. Azam Taufik Mohd Din
{"title":"增强二氧化碳捕获:SBA-15介孔二氧化硅的吸附和物理化学性质","authors":"Shalini Mahendran, Assoc. Prof. Dr. Noorfatimah Yahaya, Prof. Dr. Bassim H. Hameed, Prof. Dr. Dai Viet N. Vo, Dr. Abdelkader Ouakouak, Prof. Dr. Norikazu Nishiyama, Assoc. Prof. Dr. Azam Taufik Mohd Din","doi":"10.1002/ceat.202300576","DOIUrl":null,"url":null,"abstract":"<p>Global warming is widely recognized as one of humanity's most urgent challenges, making CO<sub>2</sub> capture from the environment crucial to mitigating problems associated with climate change. In this study, ordered mesoporous silica SBA-15 was synthesized using the sol–gel process with Pluronic P123, a nonionic surfactant, and tetraethyl orthosilicate as the silica source, with hydrochloric acid serving as the catalyst. The results indicated that the CO<sub>2</sub> adsorption capacity of SBA-15 was improved with higher CO<sub>2</sub> feed concentration but decreased with increasing flowrate, temperature, and adsorbent loading. The Avrami model provided the best fit for the experimental kinetic data. The Thomas and Yoon–Nelson models were successful in predicting the CO<sub>2</sub> adsorption performance of SBA-15 in the fixed-bed column system. The synthesized SBA-15 demonstrated its significant potential as a cost-effective CO<sub>2</sub> adsorbent by maintaining a high adsorption capacity, even after multiple regeneration cycles.</p>","PeriodicalId":10083,"journal":{"name":"Chemical Engineering & Technology","volume":"48 3","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced Carbon Dioxide Capture: Adsorption and Physicochemical Properties of SBA-15 Mesoporous Silica\",\"authors\":\"Shalini Mahendran, Assoc. Prof. Dr. Noorfatimah Yahaya, Prof. Dr. Bassim H. Hameed, Prof. Dr. Dai Viet N. Vo, Dr. Abdelkader Ouakouak, Prof. Dr. Norikazu Nishiyama, Assoc. Prof. Dr. Azam Taufik Mohd Din\",\"doi\":\"10.1002/ceat.202300576\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Global warming is widely recognized as one of humanity's most urgent challenges, making CO<sub>2</sub> capture from the environment crucial to mitigating problems associated with climate change. In this study, ordered mesoporous silica SBA-15 was synthesized using the sol–gel process with Pluronic P123, a nonionic surfactant, and tetraethyl orthosilicate as the silica source, with hydrochloric acid serving as the catalyst. The results indicated that the CO<sub>2</sub> adsorption capacity of SBA-15 was improved with higher CO<sub>2</sub> feed concentration but decreased with increasing flowrate, temperature, and adsorbent loading. The Avrami model provided the best fit for the experimental kinetic data. The Thomas and Yoon–Nelson models were successful in predicting the CO<sub>2</sub> adsorption performance of SBA-15 in the fixed-bed column system. The synthesized SBA-15 demonstrated its significant potential as a cost-effective CO<sub>2</sub> adsorbent by maintaining a high adsorption capacity, even after multiple regeneration cycles.</p>\",\"PeriodicalId\":10083,\"journal\":{\"name\":\"Chemical Engineering & Technology\",\"volume\":\"48 3\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2025-01-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Engineering & Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ceat.202300576\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering & Technology","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ceat.202300576","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Enhanced Carbon Dioxide Capture: Adsorption and Physicochemical Properties of SBA-15 Mesoporous Silica
Global warming is widely recognized as one of humanity's most urgent challenges, making CO2 capture from the environment crucial to mitigating problems associated with climate change. In this study, ordered mesoporous silica SBA-15 was synthesized using the sol–gel process with Pluronic P123, a nonionic surfactant, and tetraethyl orthosilicate as the silica source, with hydrochloric acid serving as the catalyst. The results indicated that the CO2 adsorption capacity of SBA-15 was improved with higher CO2 feed concentration but decreased with increasing flowrate, temperature, and adsorbent loading. The Avrami model provided the best fit for the experimental kinetic data. The Thomas and Yoon–Nelson models were successful in predicting the CO2 adsorption performance of SBA-15 in the fixed-bed column system. The synthesized SBA-15 demonstrated its significant potential as a cost-effective CO2 adsorbent by maintaining a high adsorption capacity, even after multiple regeneration cycles.
期刊介绍:
This is the journal for chemical engineers looking for first-hand information in all areas of chemical and process engineering.
Chemical Engineering & Technology is:
Competent with contributions written and refereed by outstanding professionals from around the world.
Essential because it is an international forum for the exchange of ideas and experiences.
Topical because its articles treat the very latest developments in the field.