{"title":"通过辐射诱导接枝使咪唑和吡啶分子功能化的聚乙烯用于碱性固体聚合物电解质膜","authors":"Bharath Govind, Sunita Rattan, Prachi Singhal, Bruno Ameduri, Ankit Tyagi, Arindam Modak","doi":"10.1002/ceat.202400279","DOIUrl":null,"url":null,"abstract":"<p>Hydrocarbon-based polymer electrolytes hold great promise for practical electrochemical device deployment but suffer from limitations such as ionic conductivity, alkaline stability, and hydrophobicity. This work reports a new membrane, LLDPE-g-1VIm/4VP, prepared by radiation grafting a binary mixture of 1-vinyl imidazole and 4-vinylpyridine onto linear low-density polyethylene. Short branches in LLDPE are hypothesized to regulate water uptake, thus improving dimensional stability. Under optimized conditions, the membrane exhibits a relatively high ionic conductivity of 39.86 mS cm<sup>−1</sup> at 70 °C, good mechanical strength, improved dimensional stability, and moderate alkaline stability even after 240 h at 60 °C under harsh conditions. Preliminary evaluations demonstrate their potential as solid polymer electrolytes for electrochemical energy applications, including alkaline anion exchange membrane fuel cells.</p>","PeriodicalId":10083,"journal":{"name":"Chemical Engineering & Technology","volume":"48 3","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Polyethylene Functionalized with Imidazolium and Pyridinium Moieties through Radiation-Induced Grafting for Alkaline Solid Polymer Electrolyte Membranes\",\"authors\":\"Bharath Govind, Sunita Rattan, Prachi Singhal, Bruno Ameduri, Ankit Tyagi, Arindam Modak\",\"doi\":\"10.1002/ceat.202400279\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Hydrocarbon-based polymer electrolytes hold great promise for practical electrochemical device deployment but suffer from limitations such as ionic conductivity, alkaline stability, and hydrophobicity. This work reports a new membrane, LLDPE-g-1VIm/4VP, prepared by radiation grafting a binary mixture of 1-vinyl imidazole and 4-vinylpyridine onto linear low-density polyethylene. Short branches in LLDPE are hypothesized to regulate water uptake, thus improving dimensional stability. Under optimized conditions, the membrane exhibits a relatively high ionic conductivity of 39.86 mS cm<sup>−1</sup> at 70 °C, good mechanical strength, improved dimensional stability, and moderate alkaline stability even after 240 h at 60 °C under harsh conditions. Preliminary evaluations demonstrate their potential as solid polymer electrolytes for electrochemical energy applications, including alkaline anion exchange membrane fuel cells.</p>\",\"PeriodicalId\":10083,\"journal\":{\"name\":\"Chemical Engineering & Technology\",\"volume\":\"48 3\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2025-01-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Engineering & Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ceat.202400279\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering & Technology","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ceat.202400279","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Polyethylene Functionalized with Imidazolium and Pyridinium Moieties through Radiation-Induced Grafting for Alkaline Solid Polymer Electrolyte Membranes
Hydrocarbon-based polymer electrolytes hold great promise for practical electrochemical device deployment but suffer from limitations such as ionic conductivity, alkaline stability, and hydrophobicity. This work reports a new membrane, LLDPE-g-1VIm/4VP, prepared by radiation grafting a binary mixture of 1-vinyl imidazole and 4-vinylpyridine onto linear low-density polyethylene. Short branches in LLDPE are hypothesized to regulate water uptake, thus improving dimensional stability. Under optimized conditions, the membrane exhibits a relatively high ionic conductivity of 39.86 mS cm−1 at 70 °C, good mechanical strength, improved dimensional stability, and moderate alkaline stability even after 240 h at 60 °C under harsh conditions. Preliminary evaluations demonstrate their potential as solid polymer electrolytes for electrochemical energy applications, including alkaline anion exchange membrane fuel cells.
期刊介绍:
This is the journal for chemical engineers looking for first-hand information in all areas of chemical and process engineering.
Chemical Engineering & Technology is:
Competent with contributions written and refereed by outstanding professionals from around the world.
Essential because it is an international forum for the exchange of ideas and experiences.
Topical because its articles treat the very latest developments in the field.