基于纤维的柔性磁机械发电机,经UV和IR处理增强,用于可持续物联网传感器†

IF 5 3区 材料科学 Q2 CHEMISTRY, PHYSICAL
Nayak Ram, Karthik Vaduganathan and Annapureddy Venkateswarlu
{"title":"基于纤维的柔性磁机械发电机,经UV和IR处理增强,用于可持续物联网传感器†","authors":"Nayak Ram, Karthik Vaduganathan and Annapureddy Venkateswarlu","doi":"10.1039/D5SE00137D","DOIUrl":null,"url":null,"abstract":"<p >The Internet of Things (IoT) demands sustainable energy sources for power sensors and communication components. This study presents a magnetoelectric (ME) coupled magneto-mechano-electric (MME) energy harvester designed to capture energy from low-amplitude stray magnetic fields. The device incorporates a truncated cantilever structure with a flexible fiber composite of piezoelectric AlN-PVDF polymer matrix combined with magnetostrictive Metglas, enhancing magneto-mechanical vibrations and power generation. The piezoelectric fibers are UV-treated to enhance piezoelectric properties, while the magnetic properties of Metglas are improved through IR treatment. These optimizations significantly enhance the ME composite's performance, as confirmed by P–E hysteresis loops, dielectric measurements, and M–H hysteresis loops, supported by MFM data. The designed MME generator achieves an open-circuit voltage of 32.8 V and an RMS DC power density of 1.4 mW cm<small><sup>−3</sup></small> under a tiny 6 Oe AC magnetic field at 50 Hz. Finite element simulations using COMSOL Multiphysics 6.2 show excellent agreement with experimental results. The harvested output power of an optimized MME generator is approximately 1100% higher than that of the untreated device (0.1 mW cm<small><sup>−3</sup></small>). Structural variations linked to these enhancements are characterized through XRD, FTIR, XPS, and HRTEM analysis. The harvested energy effectively powers flame microsensors, supporting IoT integration in smart infrastructure systems.</p>","PeriodicalId":104,"journal":{"name":"Sustainable Energy & Fuels","volume":" 7","pages":" 1871-1884"},"PeriodicalIF":5.0000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fiber-based flexible magneto-mechano-electric generators enhanced by UV and IR treatments for sustainable IoT sensors†\",\"authors\":\"Nayak Ram, Karthik Vaduganathan and Annapureddy Venkateswarlu\",\"doi\":\"10.1039/D5SE00137D\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The Internet of Things (IoT) demands sustainable energy sources for power sensors and communication components. This study presents a magnetoelectric (ME) coupled magneto-mechano-electric (MME) energy harvester designed to capture energy from low-amplitude stray magnetic fields. The device incorporates a truncated cantilever structure with a flexible fiber composite of piezoelectric AlN-PVDF polymer matrix combined with magnetostrictive Metglas, enhancing magneto-mechanical vibrations and power generation. The piezoelectric fibers are UV-treated to enhance piezoelectric properties, while the magnetic properties of Metglas are improved through IR treatment. These optimizations significantly enhance the ME composite's performance, as confirmed by P–E hysteresis loops, dielectric measurements, and M–H hysteresis loops, supported by MFM data. The designed MME generator achieves an open-circuit voltage of 32.8 V and an RMS DC power density of 1.4 mW cm<small><sup>−3</sup></small> under a tiny 6 Oe AC magnetic field at 50 Hz. Finite element simulations using COMSOL Multiphysics 6.2 show excellent agreement with experimental results. The harvested output power of an optimized MME generator is approximately 1100% higher than that of the untreated device (0.1 mW cm<small><sup>−3</sup></small>). Structural variations linked to these enhancements are characterized through XRD, FTIR, XPS, and HRTEM analysis. The harvested energy effectively powers flame microsensors, supporting IoT integration in smart infrastructure systems.</p>\",\"PeriodicalId\":104,\"journal\":{\"name\":\"Sustainable Energy & Fuels\",\"volume\":\" 7\",\"pages\":\" 1871-1884\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2025-02-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sustainable Energy & Fuels\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/se/d5se00137d\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Energy & Fuels","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/se/d5se00137d","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

物联网(IoT)需要为电力传感器和通信组件提供可持续能源。本研究提出一种磁电(ME)耦合磁机电(MME)能量采集器,设计用于捕获低振幅杂散磁场的能量。该装置采用截断悬臂结构,采用压电AlN-PVDF聚合物基体的柔性纤维复合材料结合磁致伸缩Metglas,增强磁机械振动和发电。对压电纤维进行紫外处理以提高压电性能,对metglass进行红外处理以提高其磁性能。通过MFM数据支持的P-E迟滞回线、介电测量和M-H迟滞回线证实,这些优化显著提高了ME复合材料的性能。在50hz的6 Oe交流磁场下,所设计的MME发电机的开路电压为32.8 V,有效值直流功率密度为1.4 mW cm−3。利用COMSOL Multiphysics 6.2进行的有限元模拟与实验结果吻合良好。优化后的MME发电机的收获输出功率比未处理的装置(0.1 mW cm−3)高出约1100%。通过XRD, FTIR, XPS和HRTEM分析表征了与这些增强相关的结构变化。收集的能量有效地为火焰微传感器供电,支持智能基础设施系统中的物联网集成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Fiber-based flexible magneto-mechano-electric generators enhanced by UV and IR treatments for sustainable IoT sensors†

Fiber-based flexible magneto-mechano-electric generators enhanced by UV and IR treatments for sustainable IoT sensors†

The Internet of Things (IoT) demands sustainable energy sources for power sensors and communication components. This study presents a magnetoelectric (ME) coupled magneto-mechano-electric (MME) energy harvester designed to capture energy from low-amplitude stray magnetic fields. The device incorporates a truncated cantilever structure with a flexible fiber composite of piezoelectric AlN-PVDF polymer matrix combined with magnetostrictive Metglas, enhancing magneto-mechanical vibrations and power generation. The piezoelectric fibers are UV-treated to enhance piezoelectric properties, while the magnetic properties of Metglas are improved through IR treatment. These optimizations significantly enhance the ME composite's performance, as confirmed by P–E hysteresis loops, dielectric measurements, and M–H hysteresis loops, supported by MFM data. The designed MME generator achieves an open-circuit voltage of 32.8 V and an RMS DC power density of 1.4 mW cm−3 under a tiny 6 Oe AC magnetic field at 50 Hz. Finite element simulations using COMSOL Multiphysics 6.2 show excellent agreement with experimental results. The harvested output power of an optimized MME generator is approximately 1100% higher than that of the untreated device (0.1 mW cm−3). Structural variations linked to these enhancements are characterized through XRD, FTIR, XPS, and HRTEM analysis. The harvested energy effectively powers flame microsensors, supporting IoT integration in smart infrastructure systems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Sustainable Energy & Fuels
Sustainable Energy & Fuels Energy-Energy Engineering and Power Technology
CiteScore
10.00
自引率
3.60%
发文量
394
期刊介绍: Sustainable Energy & Fuels will publish research that contributes to the development of sustainable energy technologies with a particular emphasis on new and next-generation technologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信